Efficient 3D Finite Element Modeling of a Muscle-Activated Tongue

  • Florian Vogt
  • John E. Lloyd
  • Stéphanie Buchaillard
  • Pascal Perrier
  • Matthieu Chabanas
  • Yohan Payan
  • Sidney S. Fels
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4072)


We describe our investigation of a fast 3D finite element method (FEM) for biomedical simulation of a muscle-activated human tongue. Our method uses a linear stiffness-warping scheme to achieve simulation speeds which are within a factor 10 of real-time rates at the expense of a small loss in accuracy. Muscle activations are produced by an arrangement of forces acting along selected edges of the FEM geometry. The model’s dynamics are integrated using an implicit Euler formulation, which can be solved using either the conjugate gradient method or a direct sparse solver. To assess the utility of this model, we compare its accuracy against slower, but less approximate, simulations of a reference tongue model prepared using the FEM simulation package ANSYS.


Vocal Tract Deformation Error Attachment Node Direct Sparse Solver Biomedical Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mueller, M., Gross, M.: Interactive virtual materials. In: Proceedings Graphics Interface, pp. 239–246 (2004)Google Scholar
  2. 2.
    Gerard, J., Perrier, P., Payan, Y.: 3D biomechanical tongue modelling to study speech production. Psychology Press, Sydney (in press)Google Scholar
  3. 3.
    Fels, S., Vogt, F., van den Doel, K., Lloyd, J., Stavness, I., Vatikiotis-Bateson, E.: Artisynth: A biomechanical simulation platform for the vocal tract and upper airway. Technical Report TR-2006-10, Computer Science Dept., University of British Columbia (2006)Google Scholar
  4. 4.
    Badin, P., Bailly, G., Raybaudi, M., Segebarth, C.: A three-dimensional linear articulatory model based on mri data. In: Proceedings of the International Conference of Spoken Language (ICSLP), pp. 14–20 (1998)Google Scholar
  5. 5.
    Engwall, O.: A 3D tongue model based on MRI data. In: Proceedings of the International Conference of Spoken Language (ICSLP) (2000)Google Scholar
  6. 6.
    Stone, M., Lundberg, A.: Three-dimensional tongue surfaces from ultrasound images. In: SPIE Proc., pp. 168–179 (1996)Google Scholar
  7. 7.
    King, S.A., Parent, R.E.: A 3d parametric tongue model for animated speech. JVCA 12(3), 107–115 (2001)MATHGoogle Scholar
  8. 8.
    Takemoto, H.: Morphological analysis of the human tongue muscularture for three-dimensional modeling. J. Sp. Lang. Hear. Res. 44, 95–107 (2001)CrossRefGoogle Scholar
  9. 9.
    Dang, J., Honda, K.: Construction and control of a physiological articulatory model. JASA 115(2), 853–870 (2004)Google Scholar
  10. 10.
    Wilhelms-Tricarico, R.: Physiological modeling of speech production: methods for modeling soft-tissue articulators. JASA 97(5), 3085–3098 (1995)Google Scholar
  11. 11.
    Payan, Y., Perrier, P.: Synthesis of v-v sequences with a 2d biomechanical tongue model controlled by the equilibrium point hypothesis. Speech Communications 22(2), 185–205 (1997)CrossRefGoogle Scholar
  12. 12.
    Gerard, J., Wilhelms-Tricarico, R., Perrier, P., Payan, Y.: A 3d dynamical biomechanical tongue model to study speech motor control. Recent Research Developments in Biomechanics 1, 49–64 (2003)Google Scholar
  13. 13.
    Hiiemae, K.M., Palmer, J.B.: Tongue movements in feeding and speech. Crit. Rev. Oral Biol. Med. 14, 430–449 (2003)CrossRefGoogle Scholar
  14. 14.
    Bathe, K.J.: Finite element procedures. Prentice Hall, Englewood Cliffs (1996)Google Scholar
  15. 15.
    Zienkiewicz, O., Taylor, R.: The finite element method. Oxford (2000)Google Scholar
  16. 16.
    Dang, J., Honda, K.: A physiological articulatory model for simulating speech production process. JASJ 22(6), 415–425 (2001)Google Scholar
  17. 17.
    Gerard, J., Ohayon, J., Luboz, V., Perrier, P., Payan, Y.: Indentation for estimating the human tongue soft tissues constitutive law: application to a 3d biomechanical model to study speech motor control and pathologies of the upper airways. In: Cotin, S., Metaxas, D.N. (eds.) ISMS 2004. LNCS, vol. 3078, pp. 77–83. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Teran, J., Sifakis, E., Blemker, S., Hing, V.N.T., Cynthia, L., Fedkiw, R.: Creating and simulating skeletal muscle from the visible human data set. In: IEEE TVCG (in press, 2005)Google Scholar
  19. 19.
    Cotin, S., Delingette, H., Ayache, A.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. & CG. 5(1), 62–73 (1999)CrossRefGoogle Scholar
  20. 20.
    Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. B 126, 136–195 (1938)CrossRefGoogle Scholar
  21. 21.
    Gladilin, E., Zachow, S., Deuflhard, P., Hege., H.-C.: Virtual fibers: A robust approach for muscle simulation. In: Proc. MEDICON, pp. 961–964 (2001)Google Scholar
  22. 22.
    Pai, D.K., Sueda, S., Wei., Q.: Fast physically based musculoskeletal simulation. ACM Trans. Graph (2005)Google Scholar
  23. 23.
    Stavness, I., Hannam, A.G., Lloyd, J.E., Fels, S.: An integrated dynamic jaw and laryngeal model constructed from CT data. In: Harders, M., Székely, G. (eds.) ISBMS 2006. LNCS, vol. 4072, pp. 169–177. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Nikishkov, G.: Java performance in finite element computations. Proc. Appl. Sim. & Mod., 410 (2003)Google Scholar
  25. 25.
    Schenk, O., Röllin, S., Hagemann, M.: Recent advances in sparse linear solver technology for semiconductor device simulation matrices. In: IEEE SISPAD, pp. 103–108 (2003)Google Scholar
  26. 26.
    James, D.L., Pai, D.K.: Artdefo: Accurate real time deformable objects. In: Proceedings of the International Conference on Computer Graphics and Interactive SIGGRAPH, pp. 65–72 (1999)Google Scholar
  27. 27.
    Barbic, J., James, D.L.: Real-time subspace integration for st.venant-kirchhoff deformable models. ACM Trans. on Graphics 24, 982–990 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Florian Vogt
    • 1
  • John E. Lloyd
    • 1
  • Stéphanie Buchaillard
    • 2
  • Pascal Perrier
    • 2
  • Matthieu Chabanas
    • 2
  • Yohan Payan
    • 3
  • Sidney S. Fels
    • 1
  1. 1.Dept. of ECEUniversity of British ColumbiaVancouverCanada
  2. 2.Institut de la Communication Parlée – INPGGrenobleFrance
  3. 3.Laboratoire TIMC-GMCAO, Faculté de MédecineLa TroncheFrance

Personalised recommendations