3D Cylindrical B-Spline Segmentation of Carotid Arteries from MRI Images

  • P. Makowski
  • P. J. H. de Koning
  • E. Angelie
  • J. J. M. Westenberg
  • R. J. van der Geest
  • J. H. C. Reiber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4072)


The paper presents a segmentation method based on 3D cylindrical B-spline model. Proposed method was applied to 5 patient MRA studies of carotid arteries and 1 phantom dataset. Carotid bifurcation was segmented as two independent, overlapping branches. The presented method was evaluated against observer drawn contours and phantom model. Statistical assessment of vessel lumen area showed 10.4% systematic underestimation and good precision (SD = 9.2 vs. SD interobs = 11.8) of presented method in comparison to the observer’s results.


Computational Fluid Dynamic Control Point Segmentation Method Carotid Bifurcation Active Contour Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., van Walsum, T., Viergever, M.A.: Model -Based Quantitation of 3-D Magnetic Resonance Angiographic Images. IEEE Trans. on Medical Imaging 18(10) (October 1999)Google Scholar
  2. 2.
    Scaggiante, A., Zampato, M., Frezza, R.: Identifying and Tracking Ellipses: A Technique Based on Elliptical Deformable Templates. In: 10th International Conference on Image Analysis and Processing (ICIAP 1999), pp. 582–587 (1999)Google Scholar
  3. 3.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. In: First international conference on computer vision, pp. 259–268 (1987)Google Scholar
  4. 4.
    Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understanding V 53(2), 211–218 (1991)MATHCrossRefGoogle Scholar
  5. 5.
    Sorensen, T., Therkildsen, S., Makowski, P., Knudsen, J., Pedersen, E.: A New Virtual Reality Approach for Planning of Cardiac Interventions. Artificial Intelligence in Medicine 22(2001), 193–214 (2000)Google Scholar
  6. 6.
    Yim, P.J., Vasbinder, G.B.C., Ho, V.B., Choyke, P.L.: Isosurfaces as Deformable Models for Magnetic Resonance Angiography. IEEE Trans. on Medical Imaging 22(7) (July 2003)Google Scholar
  7. 7.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: SIGGRAPH 1987, vol. 21, pp. 163–170 (1987)Google Scholar
  8. 8.
    Fruend, E.T., Baltes, C., Makowski, P., Kolandavel, M.K., Boesiger, P., Walker, P.G., Pedersen, E.M., Ringgaard, S.: Realistic 3D numerical simulations of blood flow patterns and Wall Shear Stress in the Right Coronary Artery: A new approach combining MRI and Computational Fluid Dynamics. Preliminary results, ISMRM Toronto, Canada (2003)Google Scholar
  9. 9.
    Makowski, P., Ringgaard, S., Fruend, E.T., Pedersen, E.M.: A Novel Approach to Segmentation of Coronary Arteries in MR Images for Computational Fluid Dynamics (CFD) Simulations, ISMRM, Kyoto, Japan (2004)Google Scholar
  10. 10.
    Podyma, M., Zbicinski, I., Walecki, J., Nowicki, M.L., Andziak, P., Makowski, P., Stefanczyk, L.: Numerical Analisys of Blood Flow in Human Abdominal Aorta. In: Biomedicine 2005, Bologna, Italy (2005)Google Scholar
  11. 11.
    Huang, J., Amini, A.: Anatomical Object Volumes from Deformable B-spline Surface Models. In: Int. Conf. Image Processing, Chicago (October 1998)Google Scholar
  12. 12.
    Brigger, P., Hoeg, J., Unser, M.: Bspline snakes: A flexible tool for parametric contour detection. IEEE Trans. Image Processing 9, 1484–1496 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Levienaise-Obadia, B., Gee, A.: Adaptive Segmentation of Ultrasound Images. Image Vision Comput. 17(8), 583–588 (1999)CrossRefGoogle Scholar
  14. 14.
    de Koning, P.J.H., Schaap, J.A., Janssen, J.P., Westenberg, J.J.M., van der Geest, R.J., Reiber, J.H.C.: Automated Segmentation and Analysis of Vascular Structures in Magnetic Resonance Angiographic Images. Magnetic Resonance in Medicine 50, 1189–1198 (2003)CrossRefGoogle Scholar
  15. 15.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing 7(3), 359–369 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Makowski, P., Sorensen, T.S., Therkildsen, S.V., Materka, A., Stodkilde-Jorgensen, H., Pedersen, E.M.: Two-phase active contour method for semiautomatic segmentation of the heart and blood vessels from MRI images for 3D visualization. Computerized Medical Imaging and Graphics (26), 9–17 (2002)Google Scholar
  17. 17.
    Vatti, B.R.: A Generic Solution to Polygon Clipping. Communications of the ACM 35(7), 56–63 (1992)CrossRefGoogle Scholar
  18. 18.
    Adame, I.M., van der Geest, R.J., Wasserman, B.A., Mohamed, M., Reiber, J.H.C., Lelieveldt, B.P.F.: Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images. MAGMA (Magnetic Resonance Materials in Physics, Biology and Medicine) 16(5), 227–234 (2004)CrossRefGoogle Scholar
  19. 19.
    Bland, J.M., Altman, D.G.: Measuring agreement in method comparison studies. Statistical Methods in Medical Research 8, 135–160 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • P. Makowski
    • 1
  • P. J. H. de Koning
    • 1
  • E. Angelie
    • 1
  • J. J. M. Westenberg
    • 1
  • R. J. van der Geest
    • 1
  • J. H. C. Reiber
    • 1
  1. 1.Department of Radiology, Division of Image ProcessingLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations