An Integrated Dynamic Jaw and Laryngeal Model Constructed from CT Data

  • Ian Stavness
  • Alan G. Hannam
  • John E. Lloyd
  • Sidney Fels
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4072)


Computational modeling is an important tool for studying the structure and function of human anatomy in biomedicine. In this paper, a dynamic, anatomically accurate model of the human mandibular and laryngeal structures is presented along with a set of forward dynamic simulations that show consistency with previously published jaw modeling literature. Laryngeal motion during swallowing was also simulated and shows plausible upward displacement consistent with published recordings. A novel open source modeling platform, ArtiSynth, is described in the context of its use in the construction and simulation of the biomechanical jaw and larynx model.


Obstructive Sleep Apnea Hyoid Bone Bite Force Input Probe Medial Pterygoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peck, C.C., Langenbach, G.E.J., Hannam, A.G.: Dynamic simulation of muscle and articular properties during human wide jaw opening. Archives of Oral Biology 45(11), 963–982 (2000)CrossRefGoogle Scholar
  2. 2.
    Fink, B.R.: The Human Larynx: A Functional Study. Raven Press, NY (1975)Google Scholar
  3. 3.
    Takano, S., Honda, K., Kinoshita, K.: Observation of cricothyroid joint motion using 3d high-resolution mri. In: Proc. Voice Phys. and Biomech. (2004)Google Scholar
  4. 4.
    Fels, S., Vogt, F., van den Doel, K., Lloyd, J., Stavness, I., Vatikiotis-Bateson, E.: Artisynth: A biomechanical simulation platform for the vocal tract and upper airway. Technical Report TR-2006-10, Computer Science Dept., University of British Columbia (2006)Google Scholar
  5. 5.
    Pandy, M.G.: Computer modeling and simulation of human movement. Annual Review of Biomedical Engineering 3(1), 245–273 (2001)CrossRefGoogle Scholar
  6. 6.
    Koolstra, J.H., van Eijden, T.M.G.J.: Combined finite-element and rigid-body analysis of human jaw joint dynamics. J. Biomech. 38(12), 2431–2439 (2005)CrossRefGoogle Scholar
  7. 7.
    Osborn, J.W.: Features of human jaw design which maximize the bite force. J. Biomech. 29(5), 589–595 (1996)CrossRefGoogle Scholar
  8. 8.
    Koolstra, J.H., van Eijden, T.M.G.J.: Dynamics of the human masticatory muscles during a jaw open-close movement. J. Biomech. 30(9), 883–889 (1997)CrossRefGoogle Scholar
  9. 9.
    Langenbach, G.E.J., Hannam, A.G.: The role of passive muscle tensions in a three-dimensional dynamic model of the human jaw. Archives of Oral Biology 44(7), 557–573 (1999)CrossRefGoogle Scholar
  10. 10.
    Peck, C.C., Sooch, A.S., Hannam, A.G.: Forces resisting jaw displacement in relaxed humans: a predominantly viscous phenomenon. Journal of Oral Rehabilitation 29(2), 151–160 (2002)CrossRefGoogle Scholar
  11. 11.
    Shiller, D.M., Ostry, D.J., Gribble, P.L., Laboissiere, R.: Compensation for the effects of head acceleration on jaw movement in speech. J. Neuroscience 21, 6447–6456 (2001)Google Scholar
  12. 12.
    Koolstra, J.H., van Eijden, T.M.G.J.: The jaw open-close movements predicted by biomechanical modelling. J. Biomech. 30(9), 943–950 (1997)CrossRefGoogle Scholar
  13. 13.
    Lloyd, J.E.: Fast implementation of Lemke’s algorithm for rigid body contact simulation. In: Proc. IEEE Conf. on Robotics and Automation, pp. 4549–4554 (2005)Google Scholar
  14. 14.
    Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)Google Scholar
  15. 15.
    Amira: Mercury Computer Systems Inc. (2005)Google Scholar
  16. 16.
    Rhino: Robert Mcneel and Associates (2005)Google Scholar
  17. 17.
    Gray, H.: Anatomy of the Human Body, 20th edn., Lea Febiger, Philadelphia (1918)Google Scholar
  18. 18.
    Sicher, H.: Oral Anatomy, 4th edn., Mosby, Saint Louis (1965)Google Scholar
  19. 19.
    Koolstra, J.H.: Dynamics of the human masticatory system. Crit. Rev. Oral. Biol. Med. 13(4), 366–376 (2002)CrossRefGoogle Scholar
  20. 20.
    Koolstra, J.H., van Eijden, T.M.G.J.: Functional significance of the coupling between head and jaw movements. J. Biomech. 37(9), 1387–1392 (2004)CrossRefGoogle Scholar
  21. 21.
    Muto, T., Kanazawa, M.: Positional change of the hyoid bone at maximal mouth opening. Oral Surgery, Oral Medicine and Oral Pathology 77(5), 451–455 (1994)CrossRefGoogle Scholar
  22. 22.
    Vogt, F., Lloyd, J.E., Buchaillard, S., Perrier, P., Chabanas, M., Payan, Y., Fels, S.S.: Efficient 3d finite element modeling of a muscle-activated tongue. In: Harders, M., Székely, G. (eds.) ISBMS 2006. LNCS, vol. 4072, pp. 19–28. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ian Stavness
    • 1
  • Alan G. Hannam
    • 2
  • John E. Lloyd
    • 1
  • Sidney Fels
    • 1
  1. 1.Dept. of Electrical and Computer Engineering 
  2. 2.Faculty of DentistryUniversity of British ColumbiaCanada

Personalised recommendations