Advertisement

Mechanical Characterization of the Liver Capsule and Parenchyma

  • Marc Hollenstein
  • Alessandro Nava
  • Davide Valtorta
  • Jess G. Snedeker
  • Edoardo Mazza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4072)

Abstract

Internal organs are heterogeneous structures, both on the macro- and on the micro-scale. However, they are often modeled as homogeneous solids with uniform material properties. In this light, this work investigates the impact of the liver capsule on the integral behavior of the organ by means of in vitro tests and computer simulations. The stiffness of bovine liver obtained in tissue aspiration experiments differed by a factor of 2 to 3 when the capsule was removed. As a first step, the capsule was implemented as separate structure in a finite element model of the organ undergoing tissue aspiration. The finite element simulations are in good agreement with the experimental results.

Keywords

Bovine Liver Kidney Capsule Liver Capsule Soft Biological Tissue Capsule Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Picinbono, G., Lombardo, J.C., Delingette, H., Ayache, N.: Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J. Visual. Comp. Animat. 13, 147–167 (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Snedeker, J.G., Bajka, M., Hug, J.M., Szekely, G., Niederer, P.: The creation of a high-fidelity finite element model of the kidney for use in trauma research. J. Visual. Comp. Animat. 13, 53–64 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Szekely, G.: Surgical simulators. Minimal. Invasive Ther. Allied Technol. 12, 14–18 (2003)CrossRefGoogle Scholar
  4. 4.
    Brown, J.D., Rosen, J., Kim, Y.S., Chang, L., Sinanan, M., Hannaford, B.: In vivo and in situ compressive properties of porcine abdominal soft tissues. Med. Meets Virtual Reality 11 (2003)Google Scholar
  5. 5.
    Kalanovic, D., Ottensmeyer, M.P., Gross, J., Gerhardt, B., Dawson, S.I.: Independent testing of soft tissue viscoelasticity using indention and rotary shear deformation. Med. Meets Virtual Reality 11 (2003)Google Scholar
  6. 6.
    Nava, A., Mazza, E., Kleinermann, F., Avis, N.J., McClure, J., Bajka, M.: Evaluation of the mechanical properties of human liver and kidney through aspiration experiments. Technol. Health Care 12, 269–280 (2004)Google Scholar
  7. 7.
    Nava, A., Mazza, E., Häfner, O., Bajka, M.: Experimental observation and modelling of preconditioning in soft biological tissues. In: Cotin, S., Metaxas, D. (eds.) ISMS 2004. LNCS, vol. 3078, pp. 1–8. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Ottensmeyer, M.P.: TeMPeST I-D: An instrument for measuring solid organ soft tissue properties. Experimental Techniques 26, 48–50 (2002)CrossRefGoogle Scholar
  9. 9.
    Snedeker, J.G., Niederer, P., Schmidlin, F.R., Farshad, M., Demetropolous, C.K., Lee, J.B., Yang, K.H.: Strain rate dependent material properties of the porcine and human kidney capsule. Journal of Biomechanics 38(5), 1011–1021 (2005)CrossRefGoogle Scholar
  10. 10.
    Kauer, M., Vuskovic, V., Dual, J., Szekely, G., Bajka, M.: Inverse finite element characterization of soft tissues. Med. Image Anal. 6, 275–287 (2002)CrossRefGoogle Scholar
  11. 11.
    Mazza, E., Nava, A., Hahnloser, D., Jochum, W., Bajka, M.: In vivo mechanical behavior of human liver. In: International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity, Austin, TXGoogle Scholar
  12. 12.
    Nava, A., Mazza, E., Furrer, M., Villiger, P., Reinhart, W.H.: Mechanical response of human liver from in vivo experiments. In: Proceedings of the First International Conference on Mechanics of Biomaterials & Tissues, Waikoloa, Hawaii, USAGoogle Scholar
  13. 13.
    Carter, F.J., Frank, T.G., Davies, P.J., McLean, D., Cuschieri, A.: Measurement and modelling of the compliance of human and porcine organs. Med. Image Anal. 5, 231–236 (2001)CrossRefGoogle Scholar
  14. 14.
    Yamada, H.: Strength of Biological Materials. Williams & Wilkins, Huntingdon (1970)Google Scholar
  15. 15.
    Herbert, L.A., Chen, W.C., Hartmann, A., Garancis, J.C.: Mechanical properties of the dog renal capsule. Journal of Applied Physiology 40, 164–170 (1976)Google Scholar
  16. 16.
    Farshad, M., Barbezat, M., Flueler, P., Schmidlin, F.R., Graber, P., Niederer, P.: Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma. Journal of Biomechanics 32, 417–425 (1999)CrossRefGoogle Scholar
  17. 17.
    Melvin, J.W., Stalnaker, R.L., Roberts, V.L., Trollope, M.L.: Impact injury mechanisms in abdominal organs. In: 17th Stapp Car Crash Conference, pp. 115–126Google Scholar
  18. 18.
    Arnold, G., Gressner, A.M., Clahsen, H.: Experimental studies of the historheology of the liver capsule. Anatomischer Anzeiger 142(3), 180–191 (1977)Google Scholar
  19. 19.
    Mazza, E., Nava, A., Bauer, M., Winter, R., Bajka, M., Holzapfel, G.A.: Mechanical properties of the human uterine cervix: An in vivo study. Med. Image Anal. 6, 125–136 (2006)CrossRefGoogle Scholar
  20. 20.
    Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chemistry and Technology 66, 754–771 (1993)CrossRefGoogle Scholar
  21. 21.
    Vuskovic, V.: Device for in vivo measurement of mechanical properties of internal human soft tissues. Diss., ETH Zurich No. 14222 (2001)Google Scholar
  22. 22.
    Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marc Hollenstein
    • 1
  • Alessandro Nava
    • 1
  • Davide Valtorta
    • 1
  • Jess G. Snedeker
    • 2
  • Edoardo Mazza
    • 1
  1. 1.Institute of Mechanical SystemsETH ZurichZurichSwitzerland
  2. 2.Institute for Biomedical EngineeringETH Zurich & University of ZurichZurichSwitzerland

Personalised recommendations