Computer Prediction of Friction in Balloon Angioplasty and Stent Implantation

  • Denis Laroche
  • Sebastien Delorme
  • Todd Anderson
  • Robert DiRaddo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4072)


The success of balloon angioplasty and stent implantation depends on a balance between two conflicting objectives: maximization of artery lumen patency and minimization of mechanical damage. A finite element model for the patient-specific prediction of balloon angioplasty and stent implantation is proposed as a potential tool to assist clinicians. This paper describes the general methodology and the algorithm that computes device/artery interaction during stent deployment. The potential of the model is demonstrated with examples that include artery model reconstruction, device deployment, and prediction of friction on the arterial wall.


Arterial Wall Balloon Angioplasty Stent Implantation Inflation Pressure Computer Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clowes, A.W., Clowes, M.M., Fingerle, J., Reidy, M.A.: Kinetics of cellular proliferation after arterial injury. V. Role of acute distension in the induction of smooth muscle proliferation, Lab Invest 60, 360–364 (1989)Google Scholar
  2. 2.
    Fingerle, J., Au, Y.P., Clowes, A.W., Reidy, M.A.: Intimal lesion formation in rat carotid arteries after endothelial denudation in absence of medial injury. Arteriosclerosis 10, 1082–1087 (1990)Google Scholar
  3. 3.
    Laroche, D., Delorme, S., Anderson, T., Buithieu, J., DiRaddo, R.: Computer Prediction of Balloon Angioplasty from Artery Imaging, Medicine Meets Virtual Reality 14. In: Westwood, J.D., et al. (eds.) Technology and Informatics, vol. 119, pp. 293–298 (2006)Google Scholar
  4. 4.
    Delorme, S., Laroche, D., DiRaddo, R., Buithieu, J.: Modeling polymer balloons for angioplasty: from fabrication to deployment. In: Proc Annual Technical Conference, ANTEC, SPE, Chicago, IL (2004)Google Scholar
  5. 5.
    Laroche, D., Delorme, S., Buithieu, J., Di Raddo, R.: A three-dimentional finite element model of balloon angioplasty and stent implantation. Proc. Comp. Meth. Biomech. Biomed. Eng., Madrid 5 (2004)Google Scholar
  6. 6.
    Hallquist, J.O., Goudreau, G.L., Benson, D.J.: Sliding interfaces with contact-impact in large-scale lagrangian computations. Comp. Meth. App. Mech. Eng. 51, 107–137 (1985)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Zhong, Z.H.: Finite element procedures for contact-impact problems. Oxford University Press, Oxford (1993)Google Scholar
  8. 8.
    Laursen, T.A., Simo, J.C.: A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int. J. Num. Meth. Eng. 36, 3451–3485 (1993)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Puso, M.A., Laursen, T.A.: A mortar segment-to-segment contact method for large deformation solid mechanics. Comp. Meth. Appl. Mech. Eng. 193, 601–629 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Holzapfel, G.A., Stadler, M., Schulze-Bauer, C.A.J.: A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30, 753–767 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Denis Laroche
    • 1
  • Sebastien Delorme
    • 1
  • Todd Anderson
    • 2
  • Robert DiRaddo
    • 1
  1. 1.National Research Council CanadaIndustrial Materials InstituteBoucherville, QuebecCanada
  2. 2.Dept. of MedicineUniversity of CalgaryAlbertaCanada

Personalised recommendations