Advertisement

Upper Body Tracking for Interactive Applications

  • José María Buades Rubio
  • Francisco J. Perales
  • Manuel González Hidalgo
  • Javier Varona
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4069)

Abstract

In this paper we describe a complete method for building a perceptual user interface in indoor uncontrolled environments. The overall system uses two calibrated cameras and does initialization: it detects user, takes his/her measurements, builds a 3D-Model. It performs matching/tracking for: trunk, head, left arm, right arm and hands. The system is waiting for a user in a predefined posture, once the user has been detected he/she is analysed to take measurements are taken and a 3D-Model is built. Tracking is carried out by a Particle Filter algorithm splited in three steps: tracking of head-trunk, tracking of left arm and tracking of right arm. This proposed divide and conquer solution improves computation time without getting better or similar results than sequential solution. The matching process uses two sub-matching functions, one to compute color and another to compute shape one. Finally the system provides numerical values for joints and end effectors to be used for interactive applications.

Keywords

Particle Filter Match Function Skin Region Tracking Process Interactive Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krahnstoever, N., Yeasin, M., Sharme, R.: Automatic acquisition and initialization of articulated models. Machine Vision and Applications 14(4) (2003)Google Scholar
  2. 2.
    Allen, B., Curless, B., Popovic, Z.: The space of human body shapes: reconstruction and parameterization from range images. In: Proc. ACM SIGGRAPH, pp. 587–594 (2003)Google Scholar
  3. 3.
    Carranza, J., Theobalt, C., Magnor, M., Seide, H.P.: Free-viewpoint of human actors. In: Proc. ACM SIGRRAPH, pp. 565–577 (2003)Google Scholar
  4. 4.
    Sidenbladh, H., Black, M.J.: Learning the Statistics of People in Images and Video. Int. Journal of Computer Vision 54(1/2/3), 183–209 (2003)MATHGoogle Scholar
  5. 5.
    Deustcher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 126–133 (2000)Google Scholar
  6. 6.
    Mitchelson, J., Hilton, A.: Hierachical tracking of multiple people. In: British Machine Vision Conference (2003)Google Scholar
  7. 7.
    Buades, J.M., Gonzalez, M., Perales, F.J.: A New Method for Detection and Initial Pose Estimation based on Mumford-Shah Segmentation Functional. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 117–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Ballester, C., Caselles, V., Gonzalez, M.: Affine invariant segmentation by variational methods. SIAM J. Appl. Math. 56(1), 294–325 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • José María Buades Rubio
    • 1
  • Francisco J. Perales
    • 1
  • Manuel González Hidalgo
    • 1
  • Javier Varona
    • 1
  1. 1.Ed. Anselm TurmedaUniversitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations