Interactive Soft Object Simulation with Quadratic Finite Elements

  • Johannes Mezger
  • Wolfgang Straßer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4069)


We present a new method to simulate deformable volumetric objects interactively using finite elements. With quadratic basis functions and a non-linear strain tensor, we are able to model realistic local compression as well as large global deformation. The construction of the differential equations is described in detail including the Jacobian matrix required to solve the non-linear system. The results show that the bending of solids is reflected more realistically than with the linear refinement previously used in computer graphics. At the same time higher frame rates are achieved as the number of elements can be drastically reduced. Finally, an application to virtual tissue simulation is presented with the objective to improve surgical training.


Computer Animation Quadratic Element Real World Measurement Force Matrice Quadratic Shape Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerdok, A.E., Cotin, S.M., Ottensmeyer, M.P., Galea, A.M., Howe, R.D., Dawson, S.L.: Truth cube: establishing physical standards for soft tissue simulation. Medical Image Analysis 7(3), 283–291 (2003)CrossRefGoogle Scholar
  2. 2.
    Nava, A., Valtorta, D., Mazza, E.: Experimental determination of the mechanical properties of soft biological tissues. In: Int. Conf. on the Mechanical Behavior of Materials (2003)Google Scholar
  3. 3.
    Debunne, G., Desbrun, M., Cani, M.P., Barr, A.H.: Dynamic real-time deformations using space & time adaptive sampling. In: Proc. of SIGGRAPH, pp. 31–36 (2001)Google Scholar
  4. 4.
    Wu, X., Downes, M.S., Goktekin, T., Tendick, F.: Adaptive Nonlinear Finite Elements for Deformable Body Simulation Using Dynamic Progressive Meshes. In: Proc. of Eurographics (2001)Google Scholar
  5. 5.
    Grinspun, E., Krysl, P., Schröder, P.: Charms: a simple framework for adaptive simulation. In: Proc. of SIGGRAPH, pp. 281–290 (2002)Google Scholar
  6. 6.
    Hauth, M., Gross, J., Straßer, W.: Interactive physically based solid dynamics. In: Proc. SIGGRAPH Symposium on Computer Animation 2003, ACM Press, New York (2003)Google Scholar
  7. 7.
    Hauth, M., Strasser, W.: Corotational Simulation of Deformable Solids. In: Proc. WSCG, pp. 137–145 (2004)Google Scholar
  8. 8.
    Müller, M., Gross, M.: Interactive Virtual Materials. In: Proc. of Graphics Interface, pp. 239–246 (2004)Google Scholar
  9. 9.
    Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F., Magnenat-Thalmann, N., Strasser, W., Volino, P.: Collision Detection for Deformable Objects. Computer Graphics Forum 24(1) (2005)Google Scholar
  10. 10.
    Delingette, H., Ayache, N.: Hepatic surgery simulation. Commun. ACM 48(2), 31–36 (2005)CrossRefGoogle Scholar
  11. 11.
    Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)CrossRefGoogle Scholar
  12. 12.
    Fung, Y.: First Course in Continuum Mechanics, 3rd edn. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  13. 13.
    Ciarlet, P.G.: Three Dimensional Elasticity, Volume I: Mathematical Elasticity. Studies in Mathematics and its Applications, vol. 20. North-Holland, Amsterdam (1988)MATHCrossRefGoogle Scholar
  14. 14.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 5th edn. Butterworth-Heinemann (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Johannes Mezger
    • 1
  • Wolfgang Straßer
    • 1
  1. 1.University of Tübingen, WSI/GRISTübingenGermany

Personalised recommendations