Advertisement

Automatic Pose Correction for Local Feature-Based Face Authentication

  • Daniel González-Jiménez
  • Federico Sukno
  • José Luis Alba-Castro
  • Alejandro Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4069)

Abstract

In this paper, we present an automatic face authentication system. Accurate segmentation of prominent facial features is accomplished by means of an extension of the Active Shape Model (ASM) approach, the so-called Active Shape Model with Invariant Optimal Features (IOF-ASM). Once the face has been segmented, a pose correction step is applied, so that frontal face images are synthesized. For the generation of these virtual images, we make use of a subset of the shape parameters extracted from a training dataset and Thin Plate Splines texture mapping. Afterwards, sets of local features are computed from these virtual images. The performance of the system is demonstrated on configurations I and II of the XM2VTS database.

Keywords

Face Authentication Automatic Segmentation Pose Correction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pentland, A., et al.: View-based and Modular Eigenspaces for Face Recognition. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 84–91 (1994)Google Scholar
  2. 2.
    Beymer, D.J., Poggio, T.: Face Recognition from One Example View. In: Proc. International Conference on Computer Vision, pp. 500–507 (1995)Google Scholar
  3. 3.
    Blanz, V., Vetter, T.: A Morphable model for the synthesis of 3D faces. In: Proc. SIGGRAPH, pp. 187–194 (1999)Google Scholar
  4. 4.
    Bookstein, F.L.: Principal Warps: Thin-Plate Splines and the Decomposition of Deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)zbMATHCrossRefGoogle Scholar
  5. 5.
    González-Jiménez, D., Alba-Castro, J.L.: Shape Contexts and Gabor Features for Face Description and Authentication. In: Proc. IEEE ICIP 2005, pp. 962–965 (2005)Google Scholar
  6. 6.
    Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)CrossRefGoogle Scholar
  7. 7.
    Duc, B., Fischer, S., Bigun, S.: Face authentication with sparse grid gabor information. In: IEEE Proc. ICASSP, Munich, vol. 4, pp. 3053–3056 (1997)Google Scholar
  8. 8.
    Argones-Rúa, E., Kittler, J., Alba-Castro, J.L., González-Jiménez, D.: Information fusion for local Gabor features based frontal face verification. In: Proc. International Conference on Biometrics (ICB), Hong Kong, pp. 173–181. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Luttin, J., Maître, G.: Evaluation protocol for the extended M2VTS database (XM2VTSDB). Technical report RR-21, IDIAP (1998)Google Scholar
  10. 10.
    Kittler, J., Hatef, M., Duin, R., Matas, J.: On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)CrossRefGoogle Scholar
  11. 11.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  12. 12.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Florack, L.: The Syntactical Structure of Scalar Images. PhD thesis, Utrecht University, Utrecht, The Nedherlands (2001)Google Scholar
  14. 14.
    Huber, P.: Robust Statistics. Wiley, New York (1981)zbMATHCrossRefGoogle Scholar
  15. 15.
    Kang, H., Cootes, T., Taylor, C.: A comparison of face verification algorithms using appearance models. In: Proc. British Machine Vision Conference, Cardiff, UK, vol. 2, pp. 477–486 (2002)Google Scholar
  16. 16.
    Lanitis, A., Taylor, C., Cootes, T.: Automatic interpretation and coding of face images using flexible models. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 743–756 (1997)CrossRefGoogle Scholar
  17. 17.
    Messer, K., Kittler, J., Sadeghi, M., Marcel, S., Marcel, C., Bengio, S., Cardinaux, F., Sanderson, C., Czyz, J., Vandendorpe, L., et al.: Face verification competition on the XM2VTS database. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 964–974. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: The extended M2VTS database. In: Proc. International Conference on Audio- and Video-Based Person Authentication, pp. 72–77 (1999)Google Scholar
  19. 19.
    Philips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  20. 20.
    Schmid, C., Mohr, R.: Local greyvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 530–535 (1997)CrossRefGoogle Scholar
  21. 21.
    Sukno, F., Ordás, S., Butakoff, C., Cruz, S., Frangi, A.F.: Active shape models with invariant optimal features (IOF-aSMs). In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 365–375. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Walker, K., Cootes, T., Taylor, C.J.: Correspondence using distinct points based on image invariants. In: British Machine Vision Conference, vol. 1, pp. 540–549 (1997)Google Scholar
  23. 23.
    Wiskott, L., Fellows, J.-M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)CrossRefGoogle Scholar
  24. 24.
    Bengio, S., Mariéthoz, J.: A statistical significance test for person authentication. In: Proc. Odyssey, pp. 237–244 (2004)Google Scholar
  25. 25.
    Baker, S., Matthews, I.: Equivalence and Efficiency of Image Alignment Algorithms. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1090–1097 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniel González-Jiménez
    • 1
  • Federico Sukno
    • 2
  • José Luis Alba-Castro
    • 1
  • Alejandro Frangi
    • 2
  1. 1.Departamento de Teoría de la Señal y ComunicacionesUniversidad de VigoSpain
  2. 2.Departamento de TecnologíaUniversidad Pompeu FabraBarcelonaSpain

Personalised recommendations