Matching Deformable Features Based on Oriented Multi-scale Filter Banks

  • Manuel J. Marín-Jiménez
  • Nicolás Pérez de la Blanca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4069)


This paper presents a technique to enable deformable objects to be matched throughout video sequences based on the information provided by multi-scale Gaussian derivative filter banks. We show that this technique is robust enough for viewpoint changes, lighting changes, large motions of the matched object and small changes in rotation and scale. Unlike other well-known color-based techniques, this technique only uses the gray level values of the image. The proposed algorithm is mainly based on the definition of a particular multi-scale template model and a similarity measure for template matching. The matching approach has been tested on video sequences acquired with a conventional webcam showing a promising behavior with this kind of low-quality images.


Video Sequence Object Recognition Target Image Deformable Object Yellow Circle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE PAMI 26(11), 1475–1490 (2004)Google Scholar
  2. 2.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE CVPR 2003, February 2003, vol. 2, pp. 264–271 (2003)Google Scholar
  3. 3.
    Heisele, B., Ho, P., Wu, J., Poggio, T.: Face recognition: component-based versus global approaches. Computer Vision and Image Understanding 91, 6–21 (2003)CrossRefGoogle Scholar
  4. 4.
    Koenderink, J., van Doorn, A.: The structure of locally orderless images. Int. Journal of Comp. Vision (318273), 159–168 (1999)CrossRefGoogle Scholar
  5. 5.
    Koenderink, J.J., van Doorn, A.J.: Representation of local geometry in the visual system. Biological Cybernetics 55, 367–375 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Leibe, B.: Interleaved Object Categorization and Segmentation. PhD thesis, ETH Zurich (October 2004)Google Scholar
  7. 7.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2(60), 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004)CrossRefGoogle Scholar
  9. 9.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)CrossRefGoogle Scholar
  10. 10.
    Schiele, B., Crowley, J.L.: Object recognition using multidimensional receptive field histograms. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 610–619. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: IEEE CSC on CVPR (June 2005)Google Scholar
  12. 12.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. Journal Comp. Vision 1(7), 11–32 (1991)CrossRefGoogle Scholar
  13. 13.
    Varma, M., Zisserman, A.: Unifying statistical texture classification frameworks. Image and Vision Computing 22(14), 1175–1183 (2005)Google Scholar
  14. 14.
    Yokono, J.J., Poggio, T.: Oriented filters for object recognition: an empirical study. In: Proc. of the Sixth IEEE FGR (May 2004)Google Scholar
  15. 15.
    Young, R.A.: The gaussian derivative model for spatial vision: I. Retinal mechanisms. Spatial Vision 2(4), 273–293 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Manuel J. Marín-Jiménez
    • 1
  • Nicolás Pérez de la Blanca
    • 1
  1. 1.Dpt. Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations