Advertisement

Person Recognition Using Human Head Motion Information

  • Federico Matta
  • Jean-Luc Dugelay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4069)

Abstract

This paper describes a new approach for identity recognition using video sequences. While most image and video recognition systems discriminate identities using physical information only, our approach exploits the behavioural information of head dynamics; in particular the displacement signals of few head features directly extracted at the image plane level. Due to the lack of standard video database, identification and verification scores have been obtained using a small collection of video sequences; the results for this new approach are nevertheless promising.

Keywords

Face Recognition Video Sequence Gaussian Mixture Model Equal Error Rate Displacement Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. Transactions on Pattern Analysis and Machine Intelligence 20(10), 1025–1039 (1998)CrossRefGoogle Scholar
  2. 2.
    Jepson, A.D., Fleet, D.J., El-Maraghi, T.R.: Robust online appearance models for visual tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Toronto, Canada, December 8–14, 2001, vol. 1, pp. 415–422 (2001)Google Scholar
  3. 3.
    Birchfield, S.: Elliptical head tracking using intensity gradients and color histograms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Stanford, USA, June 23–25, 1998, pp. 232–237 (1998)Google Scholar
  4. 4.
    Chen, Y., Rui, Y., Huang, T.S.: JPDAF based HMM for real-time contour tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Toronto, Canada, December 8–14, 2001, vol. 1, pp. 543–550 (2001)Google Scholar
  5. 5.
    Wu, Y., Huang, T.S.: A co-inference approach to robust visual tracking. In: Proceedings of the Eighth IEEE International Conference on Computer Vision (ICCV 2001), Urbana, USA, July 7–14, 2001, vol. 2, pp. 26–33 (2001)Google Scholar
  6. 6.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)CrossRefGoogle Scholar
  7. 7.
    Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. In: Proceedings of the IEEE, College Park, USA, May 1995, pp. 705–741 (1995)Google Scholar
  8. 8.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition: A Literature Survey. ACM Computing Surveys 35(4), 399–458 (2003)CrossRefGoogle Scholar
  9. 9.
    Li, B., Chellappa, R.: A generic approach to simultaneous tracking and verification in video. IEEE Transactions on Image Processing 11(5), 530–544 (2002)CrossRefGoogle Scholar
  10. 10.
    Zhou, S., Krueger, V., Chellappa, R.: Probabilistic recognition of human faces from video. Computer Vision and Image Understanding 91(1–2), 214–245 (2003)CrossRefGoogle Scholar
  11. 11.
    Lee, K., Ho, J., Yang, M., Kriegman, D.: Visual tracking and recognition using probabilistic appearance manifolds. Computer Vision and Image Understanding 99(3), 303–331 (2005)CrossRefGoogle Scholar
  12. 12.
    Huang, P.S., Harris, C.J., Nixon, M.S.: Recognising humans by gait via parametric canonical space. Artificial Intelligence in Engineering 13(4), 359–366 (1999)CrossRefGoogle Scholar
  13. 13.
    Hayfron-Acquah, J.B., Nixon, M.S., Carter, J.N.: Automatic gait recognition by symmetry analysis. Pattern Recognition Letters 24(13), 2175–2183 (2003)CrossRefGoogle Scholar
  14. 14.
    Cunado, D., Nixon, M.S., Carter, J.N.: Automatic extraction and description of human gait models for recognition purposes. Computer Vision and Image Understanding 90(1), 1–41 (2003)CrossRefGoogle Scholar
  15. 15.
    Yam, C., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Recognition 37(5), 1057–1072 (2004)CrossRefGoogle Scholar
  16. 16.
    Paalanen, P., Kämäräinen, J.K., Ilonen, J., Kälviäinen, H.: Feature Representation and Discrimination Based on Gaussian Mixture Model Probability Densities - Practices and Algorithms. In: Research report of the Lappeenranta University of Technology, no. 95 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Federico Matta
    • 1
  • Jean-Luc Dugelay
    • 1
  1. 1.Eurecom InstituteSophia AntipolisFrance

Personalised recommendations