Transferring a Labeled Generic Rig to Animate Face Models

  • Verónica Costa Teixeira Orvalho
  • Ernesto Zacur
  • Antonio Susin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4069)


We present a facial deformation system that adapts a generic facial rig into different face models. The deformation is based on labels and allows transferring specific facial features between the generic rig and face models. High quality physics-based animation is achieved by combining different deformation methods with our labeling system, which adapts muscles and skeletons from a generic rig to individual face models. We describe how to find the correspondence of the main attributes of the generic rig, transfer them to different 3D face models and generate a sophisticated facial rig based on human anatomy. We show how to apply the same deformation parameters to different face models and obtain unique expressions. Our goal is to ease the character setup process and provide digital artists with a tool that allows manipulating models as if they were using a puppet. We end with different examples that show the strength of our proposal.


Facial Expression Facial Feature Face Model Thin Plate Spline Facial Animation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelidis, A., Cani, M., Wyvill, G., King, S.: Swirling-sweepers: Constant-volume modeling. In: Pacific Graphics 2004 (2004)Google Scholar
  2. 2.
    Bookstein, F.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. on Pattern Anaylsis and Machine Intelligence 11(6), 567–585 (1989)MATHCrossRefGoogle Scholar
  3. 3.
    Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. ACM Transactions on Graphics (TOG), SIGGRAPH 2004 23(3), 630–634 (2004)CrossRefGoogle Scholar
  4. 4.
    Carr, J., Fright, W., Beatson, R.: Surface interpolation with radial basis functions for medical imaging. IEEE Trans. on Medical Imaging 16 (1997)Google Scholar
  5. 5.
    Coquillart, S.: Extended free-form deformations: A sculpturing tool for 3d geometric modeling. In: Proc. SIGGRAPH 1990 Conf. ACM Computer Graphics, pp. 187–196 (1990)Google Scholar
  6. 6.
    Metaxas, D., DeCarlo, D., Stone, M.: An anthropometric face model using variational techniques. In: Proc. SIGGRAPH 1998, pp. 67–74 (1987)Google Scholar
  7. 7.
    Szeliski, R., Salesin, D.H., Pighin, F., Lischinski, D., Hecker, J.: Synthesizing realistic facial expressions from photographs. In: Proc. SIGGRAPH 1998 Conf., pp. 75–84 (1998)Google Scholar
  8. 8.
    Faigin, G.: The artist’s complete guide to facial expressions, pp. 67–74. Watson-Guptill Publications, New York (1987)Google Scholar
  9. 9.
    Farkas, M., Leslie, Ian (eds.): Anthropometric facial proportions in medicine. Charles Thomas publisher ltd., USA (1987)Google Scholar
  10. 10.
    Haber, J.: Anatomy of the human head. In: SIGGRAPH 2004, Course Notes: Facial Modeling and Animation (2004)Google Scholar
  11. 11.
    Hilger, K.B., Paulsen, R.R., Larsen, R.: Markov random field restoration of point correspondences for active shape modelling. In: SPIE - Medical Imaging (2004)Google Scholar
  12. 12.
    Hsu, W.M., Hugues, J.F., Kaufman, H.: Direct manipulation of free-form deformation. In: Proc. SIGGRAPH 1992, pp. 177–184. ACM Press, New York (1992)CrossRefGoogle Scholar
  13. 13.
    Hutton, T., Buxton, B., Hammond, P.: Dense surface point distribution models of the human face. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 153–160 (2001)Google Scholar
  14. 14.
    Joshi, P., Tien, W., Desbrun, M., Pighin, F.: Learning controls for blend shape based realistic facial animation. In: Eurographics/SIGGRAPH Symposium on Computer Animation, pp. 187–192. ACM Press, New York (2003)Google Scholar
  15. 15.
    Yamauchi, H., Seidel, H., Kahler, K., Haber, J.: Head shop: Generating animated head models with anatomical structure. ACM, New York (2002)Google Scholar
  16. 16.
    Lorenz, C., Krahnstöver, N.: Generation of point-based 3d statistical shape models for anatomical objects. Computer Vision and Image Understanding: CVIU 77, 175–191 (2000)CrossRefGoogle Scholar
  17. 17.
    Noh, J., Neumann, U.: Expression cloning. In: Proc. SIGGRAPH 2001 Conf., ACM SIGGRAPH, pp. 277–288 (2001)Google Scholar
  18. 18.
    Rohr, K., Stiehl, H.S., Sprengel, R., Buzug, T.M., Weese, J., Kuhn, M.H.: Landmark-based elastic registration using approximating thin-plate splines. IEEE Trans. on Medical Imaging 20, 526–534 (2001)CrossRefGoogle Scholar
  19. 19.
    Schleifer, J.: Character setup from rig mechanics to skin deformations: A practical approach. In: Proc. SIGGRAPH 2002, Course Note (2002)Google Scholar
  20. 20.
    Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. In: Proc. SIGGRAPH 1986 Conf., ACM Computer Graphics, pp. 151–160 (1986)Google Scholar
  21. 21.
    Singh, K., Fiume, E.L.: Wires: a geometric deformation technique. In: Proc. SIGGRAPH 1998 Conf., ACM Computer Graphics, pp. 405–414 (1998)Google Scholar
  22. 22.
    Szeliski, R., Lavallee, S.: Matching 3d anatomical surfaces with non-rigid deformation using octree splines. Internatinal Journal of Computer Vision 18(2), 171–186 (1996)CrossRefGoogle Scholar
  23. 23.
    Waters, K., Frisbie, J.: A coordinated muscle model for speech animation. In: Proc. Graphics Interface 1995, pp. 163–170 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Verónica Costa Teixeira Orvalho
    • 1
  • Ernesto Zacur
    • 2
  • Antonio Susin
    • 1
  1. 1.Laboratorio de Simulación DinámicaUniv. Politècnica de Catalunya 
  2. 2.Universitat Pompeu Fabra 

Personalised recommendations