Generalized SCODEF Deformations on Subdivision Surfaces

  • Sandrine Lanquetin
  • Romain Raffin
  • Marc Neveu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4069)


This paper proposes to define a generalized SCODEF deformation method on a subdivision surface. It combines an “easy-to-use” free-form deformation with a Loop subdivision algorithm. The deformation method processes only on vertices of an object and permits the satisfaction of geometrical constraints given by the user. The method controls the resulting shape, defining the range (i.e. the impact) of the deformation on an object before applying it. The deformation takes into account the Loop properties to follow the subdivision scheme, allowing the user to fix some constraints at the subdivision-level he works on and to render the final object at the level he wants to. We also propose an adaptive subdivision of the object driven by the deformation influence.


Loop Scheme Subdivision Scheme Deformation Model Deformation Method Influence Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agron, P.: Free Form Deformation of Subdivision Surfaces. Course paper, SUNY Stony Brook (Spring 2002)Google Scholar
  2. 2.
    Barr, A.H.: Global and local deformations of solid primitives. Computer Graphics 18(3), 21–30 (1984)CrossRefGoogle Scholar
  3. 3.
    Borrel, P., Bechmann, D.: Deformations of n-dimensional objects. Research Report, IBM Research Division (1990)Google Scholar
  4. 4.
    Borrel, P., Rappoport, A.: Simple Constrained Deformations for Geometric Modeling and Interactive Design. ACM Transactions on Graphics 13(2), 137–155 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design 9(6), 350–355 (1978)CrossRefGoogle Scholar
  6. 6.
    Chaikin, G.: An algorithm for High Speed Curve Generation. CGIP 3, 346–349 (1974)Google Scholar
  7. 7.
    Coquillart, S.: Extended Free-Form Deformation: a Sculpturing tool for 3D Geometric Modeling. ACM Computer Graphics 24(4) (1990)Google Scholar
  8. 8.
    Doo, D., Sabin, M.: Behaviour of recursive subdivision surfaces near extraordinary points. Computer Aided Design 9(6), 356–360 (1978)CrossRefGoogle Scholar
  9. 9.
    Ehmann, S., Gregory, A., Lin, M.: A Touch-Enabled System for Multiresolution Model-ing and 3D Painting. Journal of Visualization and Computer Animation (2001)Google Scholar
  10. 10.
    Khodakovsky, A., Schröder, P.: Fine level feature editing for subdivision surfaces. In: Symposium on Solid Modeling and Applications, pp. 203–211 (1999)Google Scholar
  11. 11.
    Lanquetin, S.: Study of subdivision surfaces: intersection, accuracy and depth of subdivision. PhD thesis, University of Burgundy, France (2004) (in French)Google Scholar
  12. 12.
    Lanquetin et, S., Raffin, R.: Constrained free form deformation on subdivision surfaces. In: Advances in Computational Methods in Sciences and Engineering 2005, Selected papers from the international conference of computational methods in sciences and engineering, Theodore Simos, Loutraki, Greece, vol. 4A, pp. 311–314 (2005)Google Scholar
  13. 13.
    Lanquetin et, S., Neveu, M.: A new non-uniform Loop scheme. In: International Conference on Computer Graphics Theory and Applications (GRAPP), Setúbal, Portugal (to appear, 2006)Google Scholar
  14. 14.
    Lee, A., Moreton, H., Hoppe, H.: Displaced Subdivision Surfaces. In: Proceedings of SIGGRAPH 2000, pp. 85–94 (2000)Google Scholar
  15. 15.
    Loop, C.: Smooth Subdivision Surfaces Based on Triangles. Department of Mathematics: Master’s thesis, University of Utah (1987)Google Scholar
  16. 16.
    Raffin, R., Neveu, M., Jaar, F.: Extended constrained deformations: a new sculpturing tool. In: International Conference on Shape Modeling and Applications, University of Aizu, Japan, pp. 219–224. IEEE Computer Society, Los Alamitos (1999)CrossRefGoogle Scholar
  17. 17.
    Schweitzer, J.E.: Analysis and Application of Subdivision Surfaces. PhD thesis, Department of Computer Science and Engineering, University of Washington (1996)Google Scholar
  18. 18.
    Sederberg, T.W., Parry, S.R.: Free-Form Deformation of Solid Geometric Models. Proceedings of Siggraph 1986, vol. 20(4) (1986)Google Scholar
  19. 19.
    Shi-Min, H., Hui, Z., Chiew-Lan, T., Jia-Guang, S.: Direct manipulation of FFD: efficient explicit solutions and decomposible multiple point constraints. The Visual Computer 17, 370–379 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sandrine Lanquetin
    • 1
  • Romain Raffin
    • 2
  • Marc Neveu
    • 1
  1. 1.LE2I, UMR CNRS 5158, UFR des Sciences et TechniquesUniversité de BourgogneDIJONFrance
  2. 2.LSISUMR CNRS 6168 Université de ProvenceMARSEILLEFrance

Personalised recommendations