Advertisement

Making the Mainstream Accessible: What’s in a Game?

  • Matthew T. Atkinson
  • Sabahattin Gucukoglu
  • Colin H. C. Machin
  • Adrian E. Lawrence
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4061)

Abstract

Though accessible gaming is a well-established phenomenon, few mainstream applications of it exist. We present some of the work of the AGRIP project – an effort to develop techniques to render modern first-person shooter games accessible to the blind and vision-impaired. We discuss some of the low-level accessibility infrastructure employed in the game AudioQuake and compare it to other contemporary research. The project’s ultimate goals of generalisation and use of the technology in educational settings are also introduced.

Keywords

Computer Game Multimodal Interface Graphic Game Local Navigation Braille Display 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Velleman, E., van Tol, R., Huiberts, S., Verwey, H.: 3d shooting games, multimodal games, sound games and more working examples of the future of games for the blind. In: Miesenberger, K., Klaus, J., Zagler, W., Burger, D. (eds.) ICCHP 2004. LNCS, vol. 3118, pp. 257–263. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Westin, T.: Game accessibility case study: Terraformers - a real-time 3d graphic game. In: The Fifth International Conference on Disability, Virtual Reality and Associated Technologies (2004)Google Scholar
  3. 3.
    Archambault, D., Burger, D.: From multimodality to multimodalities: the need for independent models. In: Constantine Stephanidis, L.E.A. (ed.) Proceedings of the UAHCI 2001 conference Universal Access in HCI - Towards an Informatino Society for All, New-Orleans, United States of America, pp. 227–231 (2001)Google Scholar
  4. 4.
    Hanson, V.L., Richards, J.T.: A web accessibility service: update and findings. In: Assets 2004. Proceedings of the 6th international ACM SIGACCESS conference on Computers and accessibility, pp. 169–176. ACM Press, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Pontelli, E., Xiong, W., Gupta, G., Karshmer, A.I.: A domain specific language framework for non-visual browsing of complex html structures. In: Assets 2000. Proceedings of the fourth international ACM conference on Assistive technologies, pp. 180–187. ACM Press, New York (2000)CrossRefGoogle Scholar
  6. 6.
    Brewster, S., Brown, L.M.: Tactons: structured tactile messages for non-visual information display. In: CRPIT 2004. Proceedings of the fifth conference on Australasian user interface, Darlinghurst, Australia, pp. 15–23. Australian Computer Society, Inc., Australia (2004)Google Scholar
  7. 7.
    Smith, A.C., Cook, J.S., Francioni, J.M., Hossain, A., Anwar, M., Rahman, M.F.: Nonvisual tool for navigating hierarchical structures. In: Assets 2004. Proceedings of the 6th international ACM SIGACCESS conference on Computers and accessibility, pp. 133–139. ACM Press, New York (2004)CrossRefGoogle Scholar
  8. 8.
    Brewster, S.A.: Using non-speech sound to overcome information overload. Displays 17 (1997)Google Scholar
  9. 9.
    LAMBDA Project: Linear Access to Mathematic for Braille Device and Audio-synthesis (2005), http://www.lambdaproject.org/
  10. 10.
    Pontelli, E., Son, T.C.: Planning, reasoning, and agents for non-visual navigation of tables and frames. In: Assets 2002. Proceedings of the fifth international ACM conference on Assistive technologies, pp. 73–80. ACM Press, New York (2002)CrossRefGoogle Scholar
  11. 11.
    Sánchez, J., Sáenz, M.: 3d sound interactive environments for problem solving. In: Assets 2005. Proceedings of the 7th international ACM SIGACCESS conference on Computers and accessibility, pp. 173–179. ACM Press, New York (2005)CrossRefGoogle Scholar
  12. 12.
    Latoschik, M.E.: A user interface framework for multimodal vr interactions. In: ICMI 2005. Proceedings of the 7th international conference on Multimodal interfaces, pp. 76–83. ACM Press, New York (2005)CrossRefGoogle Scholar
  13. 13.
    Baljko, M.: The information-theoretic analysis of unimodal interfaces and their multimodal counterparts. In: Assets 2005. Proceedings of the 7th international ACM SIGACCESS conference on Computers and accessibility, pp. 28–35. ACM Press, New York (2005)Google Scholar
  14. 14.
    Sjöström, C.: Using haptics in computer interfaces for blind people. In: CHI 2001: CHI 2001 extended abstracts on Human factors in computing systems, pp. 245–246. ACM Press, New York (2001)Google Scholar
  15. 15.
    Berry, R.: Performability and grid in an on demand world. In: Grid Performability Modelling and Measurement, Edinburgh, National eScience Centre (2004)Google Scholar
  16. 16.
  17. 17.
    Gee, J.P.: What video games have to teach us about learning and literacy. Comput. Entertain. 1(1), 20–20 (2003)CrossRefGoogle Scholar
  18. 18.
    Laird, J.E.: Using a computer game to develop advanced ai. Computer 34, 70–75 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matthew T. Atkinson
    • 1
  • Sabahattin Gucukoglu
    • 2
  • Colin H. C. Machin
    • 1
  • Adrian E. Lawrence
    • 1
  1. 1.Loughborough UniversityLoughborough, LeicestershireEngland
  2. 2.The AGRIP Project 

Personalised recommendations