Cases, Context, and Comfort: Opportunities for Case-Based Reasoning in Smart Homes

  • David Leake
  • Ana Maguitman
  • Thomas Reichherzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4008)


Artificial intelligence (AI) methods have the potential for broad impact in smart homes. Different AI methods offer different contributions for this domain, with different design goals, tasks, and circumstances dictating where each type of method best applies. In this chapter, we describe motivations and opportunities for applying case-based reasoning (CBR) to a human-centered approach to the capture, sharing, and revision of knowledge for smart homes. Starting from the CBR cognitive model of reasoning and learning, we illustrate how CBR could provide useful capabilities for problem detection and response, provide a basis for personalization and learning, and provide a paradigm for home-human communication to cooperatively guide performance improvement. After sketching how these capabilities could be served by case-based reasoning, we discuss some design issues for applying CBR within smart homes and case-based reasoning research challenges for realizing the vision.


Smart Home Smart Home Environment Smart Home System Smart Home Technology Chocolate Chip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Craik, F.I.M., Salthouse, T.A.: The Handbook of Aging and Cognition, 2nd edn. Lawrence Erlbaum, Mahwah (2000)Google Scholar
  2. 2.
    Mann, C.W., Helal, S.: Pervasive computing research on aging, disability and independence. In: Proceedings of the 2004 International Symposium on Applications and the Internet Workshops (SAINTW 2004), Tokyo, Japan, pp. 244–248. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  3. 3.
    Mynatt, E., Essa, I., Rogers, W.: Increasing the opportunities for aging-in-place. In: Proceedings of the ACM Conference on Universal Usability, Arlington, VA, USA, pp. 65–71. ACM, New York (2000)CrossRefGoogle Scholar
  4. 4.
    Pollack, M.: Intelligent technology for an aging population: The use of AI to assist elders with cognitive impairment. AI Magazine 26(2), 9–24 (2005)Google Scholar
  5. 5.
    Augusto, J.C., Nugent, C.D.: Smart homes can be smarter. In: Augusto, J.C., Nugent, C.D. (eds.) Designing Smart Homes. LNCS, vol. 4008, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Kolodner, J.: From natural language understanding to case-based reasoning and beyond: A perspective on the cognitive model that ties it all together. In: Schank, R., Langer, E. (eds.) Beliefs, Reasoning, and Decision Making: Psycho-Logic in Honor of Bob Abelson, pp. 55–110. Lawrence Erlbaum, Mahwah (1994)Google Scholar
  7. 7.
    Leake, D.: Cognition as case-based reasoning. In: Bechtel, W., Graham, G. (eds.) A Companion to Cognitive Science, pp. 465–476. Blackwell, Oxford (1998)Google Scholar
  8. 8.
    Cunningham, P., Doyle, D., Loughrey, J.: An evaluation of the usefulness of case-based explanation. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 122–130. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Watson, I.: Case-based reasoning is a methodology not a technology. Knowledge-Based Systems 12, 303–308 (1996)CrossRefGoogle Scholar
  10. 10.
    Schank, R.: Dynamic Memory: A Theory of Learning in Computers and People. Cambridge University Press, Cambridge (1982)Google Scholar
  11. 11.
    Schank, R., Leake, D.: Natural language understanding: Models of Roger Schank and his students. In: Encyclopedia of Cognitive Science, pp. 189–195. Nature Publishing Group, London (2002)Google Scholar
  12. 12.
    Domeshek, E.: Do the Right Things: A Component Theory for Indexing Stories as Social Advice. PhD thesis, The Institute for the Learning Sciences, Northwestern University (1992)Google Scholar
  13. 13.
    Leake, D.: Evaluating Explanations: A Content Theory. Lawrence Erlbaum, Hillsdale (1992)Google Scholar
  14. 14.
    Schank, R., Osgood, R., Brand, M., Burke, R., Domeshek, E., Edelson, D., Ferguson, W., Freed, M., Jona, M., Krulwich, B., Ohmayo, E., Pryor, L.: A content theory of memory indexing. Technical Report 1, Institute for the Learning Sciences, Northwestern University (1990)Google Scholar
  15. 15.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Communications 7(1), 39–52 (1994), Google Scholar
  16. 16.
    Kolodner, J., Leake, D.: A tutorial introduction to case-based reasoning. In: Leake, D. (ed.) Case-Based Reasoning: Experiences, Lessons, and Future Directions, pp. 31–65. AAAI Press, Menlo Park (1996)Google Scholar
  17. 17.
    Leake, D.: CBR in context: The present and future. In: Leake, D. (ed.) Case-Based Reasoning: Experiences, Lessons, and Future Directions, pp. 3–30. AAAI Press, Menlo Park (1996), Google Scholar
  18. 18.
    Leake, D.B., Wilson, D.C.: When experience is wrong: Examining CBR for changing tasks and environments. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, pp. 218–232. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M., Cox, M., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse, revise, and retention in CBR. Knowledge based systems (in press, 2006)Google Scholar
  20. 20.
    Smyth, B., Keane, M.: Adaptation-guided retrieval: Questioning the similarity assumption in reasoning. Artificial Intelligence 102(2), 249–293 (1998)CrossRefMATHGoogle Scholar
  21. 21.
    Leake, D., Kinley, A., Wilson, D.: Linking adaptation and similarity learning. In: Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society, pp. 591–596. Lawrence Erlbaum, Mahwah (1996)Google Scholar
  22. 22.
    Wiratunga, N., Craw, S., Taylor, B., Davis, G.: Case-based reasoning for matching SMARTHOUSE technology to people’s needs. Knowledge based systems 17, 139–146 (2004)CrossRefGoogle Scholar
  23. 23.
    Leake, D.: Focusing construction and selection of abductive hypotheses. In: Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pp. 24–29. Morgan Kaufmann, San Francisco (1993)Google Scholar
  24. 24.
    Kolodner, J.: Improving human decision making through case-based decision aiding. AI Magazine 12(2), 52–68 (1991)Google Scholar
  25. 25.
    Leake, D., McSherry, D.: Explanation in Case-Based Reasoning. Kluwer, Dordrecht (2005); Special issue of Artificial Intelligence Review (in press)Google Scholar
  26. 26.
    Patterson, D., Rooney, N., Galushka, M.: Learning by data mining. In: Augusto, J., Nugent, C. (eds.) Designing Smart Homes: The Role of Artificial Intelligence, Springer, Berlin (2006)Google Scholar
  27. 27.
    Dean, T., Boddy, M.: An analysis of time-dependent planning. In: Proceedings of the seventh national conference on artificial intelligence, pp. 49–54. Morgan Kaufmann, San Mateo (1988)Google Scholar
  28. 28.
    Riesbeck, C.: What next? The future of CBR in postmodern AI. In: Leake, D. (ed.) Case-Based Reasoning: Experiences, Lessons, and Future Directions, pp. 371–388. AAAI Press, Menlo Park (1996)Google Scholar
  29. 29.
    Leake, D.: Personalized CBR: Challenges and illustrations. In: ECCBR: Workshop on Case Based Reasoning and Personalization, Aberdeen, Scotland (2002)Google Scholar
  30. 30.
    Blanzieri, E.: A cognitive framework for personalization of the CBR cycle. In: ECCBR Workshop on Case Based Reasoning and Personalization, Aberdeen, Scotland (2002)Google Scholar
  31. 31.
    Mozer, M.: Lessons from an adaptive house. In: Cook, D., Das, R. (eds.) Smart environments: Technologies, protocols, and applications, pp. 273–294. Wiley, Hoboken (2005)Google Scholar
  32. 32.
    Musliner, D., Pell, B. (eds.): Agents with Adjustable Autonomy. AAAI Press, Menlo Park (1999), Technical Report SS-99-06Google Scholar
  33. 33.
    Cassell, J.: Embodied conversational agents. AI Magazine 22(4), 67–83 (2001)Google Scholar
  34. 34.
    Weiser, M.: The computer for the 21st century. Scientific American 265(3), 94–104 (1991)CrossRefGoogle Scholar
  35. 35.
    Streitz, N., Röcker, C., Prante, T., van Alphen, D., Stenzel, R., Magerkurth, C.: Designing smart artifacts for smart environments. Computer 38(3) (2005)Google Scholar
  36. 36.
    Buchanan, B., Shortliffe, E.: Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading (1984)Google Scholar
  37. 37.
    Ashley, K., Rissland, E.: Compare and contrast, a test of expertise. In: Proceedings of the Sixth Annual National Conference on Artificial Intelligence, San Mateo, CA, pp. 273–284, AAAI, Morgan Kaufmann (1987)Google Scholar
  38. 38.
    Massie, S., Craw, S., Wiratunga, N.: A visualisation tool to explain case-base reasoning solutions for tablet formulation. In: Proceedings of the 24th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, Springer, Berlin (2004)Google Scholar
  39. 39.
    Rhodes, B., Starner, T.: The remembrance agent: A continuously running automated information retrieval system. In: Proceedings of The First International Conference on The Practical Application of Intelligent Agents and Multi Agent Technology (PAAM 1996), London, UK, pp. 487–495 (1996)Google Scholar
  40. 40.
    Budzik, J., Hammond, K.: Watson: Anticipating and contextualizing information needs. In: 62nd Annual Meeting of the American Society for Information Science, Medford, NJ (1999)Google Scholar
  41. 41.
    Rhodes, B.J.: Margin notes: Building a contextually aware associative memory. In: The Proceedings of the International Conference on Intelligent User Interfaces (IUI 2000) (2000)Google Scholar
  42. 42.
    Budzik, J., Hammond, K., Birnbaum, L.: Information access in context. Knowledge based systems 14(1–2), 37–53 (2001)CrossRefGoogle Scholar
  43. 43.
    Burke, R., Kass, A.: Retrieving stories for case-based teaching. In: Leake, D. (ed.) Case-Based Reasoning: Experiences, Lessons, and Future Directions, pp. 93–109. AAAI Press, Menlo Park (1996)Google Scholar
  44. 44.
    Pollack, M.E., Brown, L., Colbry, D., McCarthy, C.E., Orosz, C., Peintner, B., Ramakrishnan, S., Tsamardinos, I.: Autominder: An intelligent cognitive orthotic system for people with memory impairment. Robotics and Autonomous Systems 44(3-4), 273–282 (2003)CrossRefGoogle Scholar
  45. 45.
    LoPresti, E.F., Mihailidis, A., Kirsch, N.: Assistive technology for cognitive rehabilitation: State of the art. Neuropsychological Rehabilitation 14(1-2), 5–39 (2004)CrossRefGoogle Scholar
  46. 46.
    Aha, D., Munoz, H.: Interactive Case-Based Reasoning, vol. 14. Kluwer, Dordrecht (2001) (Special issue of Applied Intelligence) Google Scholar
  47. 47.
    Novak, J., Gowin, D.: Learning How to Learn. Cambridge University Press, New York (1984)Google Scholar
  48. 48.
    Cañas, A., Leake, D., Wilson, D.: Managing, mapping, and manipulating conceptual knowledge. In: Proceedings of the AAAI-1999 Workshop on Exploring Synergies of Knowledge Management and Case-Based Reasoning, pp. 10–14. AAAI Press, Menlo Park (1999)Google Scholar
  49. 49.
    Leake, D., Wilson, D.: A case-based framework for interactive capture and reuse of design knowledge. Applied Intelligence 14, 77–94 (2001)CrossRefMATHGoogle Scholar
  50. 50.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  51. 51.
    Watson, I.: Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann, San Mateo (1997)MATHGoogle Scholar
  52. 52.
    Simpson, R.C., Schreckenghost, D., LoPresti, E.F., Kirsch, N.: Plans and planning in smart homes. In: Augusto, J.C., Nugent, C.D. (eds.) Designing Smart Homes. LNCS, vol. 4008, pp. 71–84. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  53. 53.
    Dey, A., Abowd, G., Salber, D.: A context-based infrastructure for smart environments. In: Proceedings of the 1st International Workshop on Managing Interactions in Smart Environments (MANSE 1999), pp. 114–128 (1999)Google Scholar
  54. 54.
    Meyer, S., Rakotonirainy, A.: A survey of research on context-aware homes. In: CRPITS 2003. Proceedings of the Australasian information security workshop conference on ACSW frontiers 2003, Darlinghurst, Australia, pp. 159–168. Australian Computer Society (2003)Google Scholar
  55. 55.
    Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech smart house: A programmable pervasive space. Computer 38(3) (2005)Google Scholar
  56. 56.
    Cook, D.J., Youngblood, M., Heierman, E.O., Gopalratnam, K., Rao, S., Litvin, A., Khawaja, F.: Mavhome: An agent-based smart home. In: Proceedings of the IEEE International Conference on Pervasive Computing and Communications, pp. 521–524. IEEE Computer, Los Alamitos (2000)Google Scholar
  57. 57.
    Pentland, A.: Smart rooms. Scientific American 274(4), 68–76 (1996)CrossRefGoogle Scholar
  58. 58.
    Choudhury, T., Pentland, A.: Sensing and modeling human networks using the sociometer. In: ISWC 2003, pp. 216–222. IEEE Press, Los Alamitos (2003)Google Scholar
  59. 59.
    Allen, J.F., Byron, D.K., Dzikovska, M., Fergusion, G., Galescu, L., Stent, A.: Toward conversational human-computer interaction. AI Magazine 22(4), 27–37 (2001)Google Scholar
  60. 60.
    Dey, A.: Understanding and using context. Personal Ubiquitous Computing 5(1), 4–7 (2001)CrossRefGoogle Scholar
  61. 61.
    Gross, T., Specht, M.: Awareness in context-aware information systems. In: Proceedings of Mensch & Computer, pp. 221–232. Teubner Verlag, Wiesbaden (2001)Google Scholar
  62. 62.
    Roth-Berghofer, T.R., Schulz, S., Leake, D.B. (eds.): MRC 2005. LNCS (LNAI), vol. 3946. Springer, Heidelberg (2006)Google Scholar
  63. 63.
    Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23(1), 69–101 (1996)Google Scholar
  64. 64.
    Barletta, R.: A hybrid indexing and retrieval strategy for advisory CBR systems built with ReMind. In: Proceedings of the Second European Workshop on Case-Based Reasoning, Chantilly, France, pp. 49–58 (1994)Google Scholar
  65. 65.
    Mark, W., Simoudis, E., Hinkle, D.: Case-based reasoning: Expectations and results. In: Leake, D. (ed.) Case-Based Reasoning: Experiences, Lessons, and Future Directions, pp. 269–294. AAAI Press, Menlo Park (1996)Google Scholar
  66. 66.
    Smith, I., Lottaz, C., Faltings, B.: Spatial composition using cases: IDIOM. In: Proceedings of First International Conference on Case-Based Reasoning, pp. 88–97. Springer, Berlin (1995)Google Scholar
  67. 67.
    Gervasio, M., Iba, W., Langley, P., Sage, S.: Interactive adaptation for crisis response. In: Proceedings of the AIPS 1998 Workshop on Interactive and Collborative Planning (1998)Google Scholar
  68. 68.
    Leake, D., Kinley, A., Wilson, D.: Learning to improve case adaptation by introspective reasoning and CBR. In: Proceedings of the First International Conference on Case-Based Reasoning, pp. 229–240. Springer, Berlin (1995)Google Scholar
  69. 69.
    Leake, D., Smyth, B., Wilson, D., Yang, Q. (eds.): Maintaining Case-Based Reasoning Systems. Blackwell, Malden (2001), Special issue of Computational Intelligence 17(2) (2001)Google Scholar
  70. 70.
    Zhang, Z., Yang, Q.: Towards lifetime maintenance of case base indexes for continual case based reasoning. In: Giunchiglia, F. (ed.) AIMSA 1998. LNCS, vol. 1480, pp. 489–500. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  71. 71.
    Yang, Q., Cheng, S.: Case mining from large databases. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 691–702. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  72. 72.
    Ram, A., Santamaria, J.: Continuous case-based reasoning. In: Proceedings of the AAAI 1993 Workshop on Case-Based Reasoning, pp. 86–93. AAAI Press, Washington (1993) AAAI Press technical report WS-93-01Google Scholar
  73. 73.
    Leake, D., Sooriamurthi, R.: Case dispatching versus case-base merging: When MCBR matters. International Journal of Artificial Intelligence Tools 13(1), 237–254 (2004)CrossRefGoogle Scholar
  74. 74.
    Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  75. 75.
    Cheetham, W., Price, J.: Measures of solution accuracy in case-based reasoning systems. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 106–118. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  76. 76.
    Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting query repetition and regularity in an adaptive community-based web search engine. User Modeling and User-Adapted Interaction 14, 383–423 (2005)CrossRefGoogle Scholar
  77. 77.
    Schreckenghost, D., Martin, C., Thronesbery, C.: Specifying organizational policies and individual preferences for human-software interaction. In: Proceedings of AAAI Fall Symposium on Etiquette for Human-Computer Work, Technical Report FS-02-02, North Falmouth, Massachusetts, AAAI, pp. 32–39 (2002)Google Scholar
  78. 78.
    Barett, R.: People and policies: Transforming the human-computer partnership. In: Proceedings of the 5th IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY 2004), Yorktown Heights, NY, pp. 111–116. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Leake
    • 1
  • Ana Maguitman
    • 1
  • Thomas Reichherzer
    • 1
  1. 1.Computer Science DepartmentIndiana UniversityBloomingtonU.S.A.

Personalised recommendations