Advertisement

Temporal Constraints with Multiple Granularities in Smart Homes

  • Carlo Combi
  • Rosalba Rossato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4008)

Abstract

In this chapter, we propose a logic-based approach to describe temporal constraints with multiple time granularities related to events occurring in Smart Homes. We identify a time granularity as a (possibly) infinite sequence of time points properly labeled with propositional symbols marking the starting and the ending points of each granule. In particular, sensor granularities describe time intervals during which Smart Home sensors are in the state “ON”. Both time and sensor granularities and temporal constraints are expressed by means of PPLTL formulae. Temporal constraints for Smart Home are satisfied when the specific relationships between time/sensor granularities, involved in the described constraints, hold.

Keywords

Temporal Constraint Smart Home Atomic Proposition Kripke Structure Smoke Alarm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argyroudis, P.G., O’Mahony, D.: Securing communications in the smart home. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.) EUC 2004. LNCS, vol. 3207, pp. 891–902. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Augusto, J.C.: Temporal reasoning for decision support in medicine. Artificial Intelligence in Medicine 33(1), 1–24 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Augusto, J.C., Nugent, C.D.: The use of temporal reasoning and management of complex events in smart homes. In: de Mántaras, R.L., Saitta, L. (eds.) 16th Eureopean Conference on Artificial Intelligence (ECAI 2004), pp. 778–782. IOS Press, Amsterdam (2004)Google Scholar
  4. 4.
    Bettini, C., Jajodia, S., Wang, X.S.: Time granularities in Databases, Data Mining, and Temporal Reasoning. Springer, Heidelberg (2000)MATHGoogle Scholar
  5. 5.
    Bettini, C., De Sibi, R.: Symbolic representation of user-defined time granularities. Annals of Mathematics and Atificial Intelligence 30(1–4), 53–92 (2000)CrossRefMATHGoogle Scholar
  6. 6.
    Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: KRONOS: A Model-Checking Tool for Real-Time Systems. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Cervesato, I., Franceschet, M., Montanari, A.: A guided tour through some extensions of the event calculus. Computational Intelligence 16(2), 307–347 (2000)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chandra, R., Sergev, A., Stonebraker, M.: Implementing calendars and temporal rules in next generation databases. In: Elmagarmid, A.K., Neuhold, E. (eds.) International Conference on Data Engineering, pp. 264–273. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  9. 9.
    Chittaro, L., Combi, C.: Temporal granularity and indeterminacy in reasoning about actions and change: An approach based on the event calculus. Annals of Mathematics and Artificial Intelligence 36(1-2), 81–119 (2002)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Chittaro, L., Montanari, A.: Efficient temporal reasoning in the cached event calculus. Computational Intelligence 12, 359–382 (1996)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Ciapessoni, E., Corsetti, E., Montanari, A., Pietro, P.S.: Embedding time grnaularity in a logical specification language for synchronous real-time systems. Science of Computer Programming 20, 141–171 (1993)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transaction on Programming Languages Systems 8(2), 244–263 (1986)CrossRefMATHGoogle Scholar
  13. 13.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  14. 14.
    Clifford, J., Rao, A.: A simple, general structure for temporal domains. In: Temporal Aspects in Information Systems, pp. 17–28. North-Holland/Elsevier (1987)Google Scholar
  15. 15.
    Combi, C., Franceschet, M., Peron, A.: A logical approach to represent and reason about calendars. In: 9th International Symposium on Temporal Representation and Reasoning (TIME 2002), pp. 134–140. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  16. 16.
    Combi, C., Franceschet, M., Peron, A.: Representing and reasoning about temporal granularities. Journal of Logic and Computation 14(1), 51–77 (2004)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Combi, C., Montanari, A., Rossato, R.: A uniform algebraic characterization of temporal functional dependencies. In: 12th International Symposium on Temporal Representation and Reasoning (TIME 2005), pp. 91–99. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  18. 18.
    Combi, C., Rossato, R.: Temporal functional dependencies with multiple granularities: A logic based approach. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 864–873. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 16, vol. B, pp. 995–1072. MIT Press, Cambridge (1990)Google Scholar
  20. 20.
    Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science. Formal Models and Sematics (B), vol. B, pp. 995–1072 (1990)Google Scholar
  21. 21.
    Foster, D., Leban, B., McDonald, D.: A representation for collections of temporal intervals. In: Proceedings of the American National Conference on Artificial Intelligence (AAAI), pp. 367–371. Morgan Kaufmann, San Francisco (1986)Google Scholar
  22. 22.
    Franceschet, M., Montanari, A.: Branching within time: an expressively complete and elementarily decidable temporal logic for time granularity. Journal of Language and Computation 1(3-4), 229–263 (2003)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Ghorbel, M., Segarra, M.-T., Kerdreux, J., Keryell, R., Thepaut, A., Mokhtari, M.: Networking and communication in smart home for people with disabilities. In: Miesenberger, K., Klaus, J., Zagler, W.L., Burger, D. (eds.) ICCHP 2004. LNCS, vol. 3118, pp. 937–944. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Hobbs, J.R.: Granularity. In: Proc. of International Joint Conference on Artificial Intelligence, pp. 432–435. Morgan Kaufmann, San Francisco (1985)Google Scholar
  25. 25.
    Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison Wesley Professional, Reading (2004)Google Scholar
  26. 26.
    Jensen, C.S., Snodgrass, R.T., Clifford, J., Gadia, S.K., Sergev, A.: A glossary of temporal databases concepts. SIGMOD Record 21(3), 35–43 (1992)CrossRefGoogle Scholar
  27. 27.
    Keravnou, E.T.: A multidimensional and multigranular model of time for medical knowledge-based systems. Journal of Intelligent Information Systems (JIIS) 13(1-2), 73–120 (1999)CrossRefGoogle Scholar
  28. 28.
    Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation Computing 4(1), 67–95 (1986)CrossRefGoogle Scholar
  29. 29.
    Ladkin, P.B.: Time representation: A taxonomy of internal relations. In: Proceedings of the American National Conference on Artificial Intelligence (AAAI), pp. 360–366. Morgan Kaufmann, San Francisco (1986)Google Scholar
  30. 30.
    Ladkin, P.B.: Models of axioms for time intervals. In: American National Conference on Artificial Intelligence (AAAI 1987), pp. 234–239. Morgan Kaufmann, San Francisco (1987)Google Scholar
  31. 31.
    Montanari, A.: Metric and layered temporal logic for time granularity. ILLC Dissertation Series 1996-02, Institute for Logic, Language and Computation, University of Amsterdam (1996)Google Scholar
  32. 32.
    Montanari, A., Maim, E., Ciapessoni, E., Ratto, E.: Dealing with time granularity in the event calculus. In: Proc. of International Conference on Fifth Generation Computer Systems, pp. 702–712. IOS Press, Amsterdam (1992)Google Scholar
  33. 33.
    Montanari, A., Peron, A., Policriti, A.: Decidable theories of ω-layered metric temporal structures. Logic Journal of the IGPL 7(1), 79–102 (1999)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Montanari, A., Peron, A., Policriti, A.: Extending Kamp’s theorem to model time granularity. Journal of Logic and Computation 12, 641–677 (2002)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Niezette, M., Stevenne, J.: An efficient symbolic representation of periodic time. In: Finin, T.W., Yesha, Y., Nicholas, C. (eds.) CIKM 1992. LNCS, vol. 752, pp. 161–168. Springer, Heidelberg (1993)Google Scholar
  36. 36.
    Ning, P., Jajodia, S., Wang, X.S.: An algebraic representation of calendars. Annals of Mathematics and Artificial Intelligence 36, 5–38 (2002)CrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    Sadri, F., Kowalski, R.A.: Variants of the event calculus. In: Twelfth International Conference on Logic Programming, pp. 67–81. MIT Press, Cambridge (1995)Google Scholar
  38. 38.
    Segev, A., Chandra, R.: A data model for time-series analysis. In: Adam, N.R., Bhargava, B.K. (eds.) Advanced Database Systems. LNCS, vol. 759, pp. 191–212. Springer, Heidelberg (1993)Google Scholar
  39. 39.
    Shahar, Y.: A framework for knowledge-based temporal abstraction. Artificial Intelligence 90(1-2), 79–133 (1997)CrossRefMATHGoogle Scholar
  40. 40.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. Journal of the ACM 32(3), 733–749 (1985)CrossRefMathSciNetMATHGoogle Scholar
  41. 41.
    Terenziani, P.: Integrating calendar dates and qualitative temporal constraints in the treatment of periodic events. IEEE Transaction on Knowledge and Data Engineering 9(5), 763–783 (1997)CrossRefGoogle Scholar
  42. 42.
    Wang, T.-S.: When smart home meets pervasive healthcare services using mobile devices and sensor networks - status and issues. In: Mostéfaoui, S.K., Maamar, Z. (eds.) 2nd International Workshop on Ubiquitous Computing (IWUC 2005), pp. 67–74. INSTICC Press (2005)Google Scholar
  43. 43.
    Wang, X.S., Bettini, C., Brodsky, A., Jajodia, S.: Logical design for temporal databases with multiple granularities. ACM Transaction on Database Systems 22(2), 115–170 (1997)CrossRefGoogle Scholar
  44. 44.
    Wijsen, J.: Reasoning about qualitative trends in databases. Information Systems 23(7), 469–493 (1998)CrossRefGoogle Scholar
  45. 45.
    Wijsen, J.: Temporal FDs on complex objects. ACM Transactions on Database Systems 24(1), 127–176 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carlo Combi
    • 1
  • Rosalba Rossato
    • 1
  1. 1.Dipartimento di InformaticaUniversità di Verona 

Personalised recommendations