Video Navigation Based on Self-Organizing Maps

  • Thomas Bärecke
  • Ewa Kijak
  • Andreas Nürnberger
  • Marcin Detyniecki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4071)


Content-based video navigation is an efficient method for browsing video information. A common approach is to cluster shots into groups and visualize them afterwards. In this paper, we present a prototype that follows in general this approach. The clustering ignores temporal information and is based on a growing self-organizing map algorithm. They provide some inherent visualization properties such as similar elements can be found easily in adjacent cells. We focus on studying the applicability of SOMs for video navigation support. We complement our interface with an original time bar control providing – at the same time – an integrated view of time and content based information. The aim is to supply the user with as much information as possible on one single screen, without overwhelming him.


Video Content Colour Histogram Winner Neuron Temporal Segmentation Shot Boundary Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, H., Smeaton, A.F., Berrut, C., Murphy, N., Marlow, S., O’Connor, N.E.: Implementation and analysis of several keyframe-based browsing interfaces to digital video. In: Borbinha, J.L., Baker, T. (eds.) ECDL 2000. LNCS, vol. 1923, pp. 206–218. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Girgensohn, A., Boreczky, J., Wilcox, L.: Keyframe-based user interfaces for digital video. Computer 34(9), 61–67 (2001)CrossRefGoogle Scholar
  3. 3.
    Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Lin, X., Marchionini, G., Soergel, D.: A selforganizing semantic map for information retrieval. In: Proc. of the 14th Int. ACM/SIGIR Conference on Research and Development in Information Retrieval, pp. 262–269. ACM Press, New York (1991)CrossRefGoogle Scholar
  5. 5.
    Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paattero, V., Saarela, A.: Self organization of a massive document collection. IEEE Transactions on Neural Networks 11(3), 574–585 (2000)CrossRefGoogle Scholar
  6. 6.
    Roussinov, D.G., Chen, H.: Information navigation on the web by clustering and summarizing query results. Information Processing & Management 37(6), 789–816 (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Nürnberger, A., Detyniecki, M.: Visualizing changes in data collections using growing self-organizing maps. In: Proc. of Int. Joint Conference on Neural Networks (IJCANN 2002), pp. 1912–1917. IEEE, Los Alamitos (2002)Google Scholar
  8. 8.
    Laaksonen, J., Koskela, M., Oja, E.: PicSOM-self-organizing image retrieval with MPEG-7 content descriptors. IEEE Transactions on Neural Network 13, 841–853 (2002)CrossRefGoogle Scholar
  9. 9.
    Koskela, M., Laaksonen, J.: Semantic annotation of image groups with self-organizing maps. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 518–527. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Nürnberger, A., Klose, A.: Improving clustering and visualization of multimedia data using interactive user feedback. In: Proc. of the 9th Int. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 993–999 (2002)Google Scholar
  11. 11.
    Marques, O., Furht, B.: Content-based Image and Video Retrieval. Kluwer Academic Publishers, Norwell (2002)MATHGoogle Scholar
  12. 12.
    Veltkamp, R., Burkhardt, H., Kriegel, H.P.: State-Of-The-Art in Content-Based Image and Video Retrieval. Kluwer, Dordrecht (2001)MATHGoogle Scholar
  13. 13.
    Nürnberger, A., Detyniecki, M.: Adaptive multimedia retrieval: From data to user interaction. In: Strackeljan, J., Leiviskä, K., Gabrys, B. (eds.) Do smart adaptive systems exist - Best practice for selection and combination of intelligent methods. Springer, Berlin (2005)Google Scholar
  14. 14.
    Browne, P., Smeaton, A.F., Murphy, N., O’Connor, N., Marlow, S., Berrut, C.: Evaluating and combining digital video shot boundary detection algorithms. In: Proc. Irish Machine Vision and Image Processing Conference, Dublin (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Bärecke
    • 1
  • Ewa Kijak
    • 1
  • Andreas Nürnberger
    • 2
  • Marcin Detyniecki
    • 1
  1. 1.LIP6Université Pierre et Marie CurieParisFrance
  2. 2.IWSOtto-von-Guericke UniversitätMagdeburgGermany

Personalised recommendations