Mining Novice User Activity with TRECVID Interactive Retrieval Tasks

  • Michael G. Christel
  • Ronald M. Conescu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4071)


This paper investigates the applicability of Informedia shot-based interface features for video retrieval in the hands of novice users, noted in past work as being too reliant on text search. The Informedia interface was redesigned to better promote the availability of additional video access mechanisms, and tested with TRECVID 2005 interactive search tasks. A transaction log analysis from 24 novice users shows a dramatic increase in the use of color search and shot-browsing mechanisms beyond traditional text search. In addition, a within-subjects study examined the employment of user activity mining to suppress shots previously seen. This strategy did not have the expected positive effect on performance. User activity mining and shot suppression did produce a broader shot space to be explored and resulted in more unique answer shots being discovered. Implications for shot suppression in video retrieval information exploration interfaces are discussed.


Image Query Mean Average Precision Image Search Video Retrieval Text Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Over, P., Ianeva, T., Kraaij, W., Smeaton, A.F.: TRECVID 2005 – An Introduction. In: TRECVID 2005 Proceedings (2005),
  2. 2.
    Hauptmann, A.G.: Lessons for the Future from a Decade of Informedia Video Analysis Research. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 1–10. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Christel, M., Conescu, R.: Addressing the Challenge of Visual Information Access from Digital Image and Video Libraries. In: Proc. ACM/IEEE JCDL, Denver, June 2005, pp. 69–78. ACM Press, New York (2005)Google Scholar
  4. 4.
    Christel, M., Moraveji, N.: Finding the Right Shots: Assessing Usability and Performance of a Digital Video Library Interface. In: Proc. ACM Multimedia, October 2004, pp. 732–739. ACM Press, New York (2004)Google Scholar
  5. 5.
    Adcock, J., Cooper, M., Girgensohn, A., Wilcox, L.: Interactive Video Search Using Multilevel Indexing. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 205–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Snoek, C., Worring, M., et al.: MediaMill: Exploring News Video Archives based on Learned Semantics. In: Proc. ACM Multimedia, Singapore, November 2005, pp. 225–226. ACM Press, New York (2005)Google Scholar
  7. 7.
    Hauptmann, A., Christel, M.: Successful Approaches in the TREC Video Retrieval Evaluations. In: Proc. ACM Multimedia, October 2004, pp. 668–675. ACM Press, New York (2004)Google Scholar
  8. 8.
    Nielsen, J.: Heuristic Evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection Methods. John Wiley & Sons, New York (1994)Google Scholar
  9. 9.
    Shneiderman, B., Byrd, D., Croft, W.B.: Clarifying Search: A User-Interface Framework for Text Searches. D-Lib Magazine 3(1) (January 1997),
  10. 10.
    Kraaij, W., Smeaton, A.F., Over, P., Arlandis, J.: TRECVID 2004 – An Introduction. In: TRECVID 2004 Proc. (2004),
  11. 11.
    Yang, M., Wildemuth, B., Marchionini, G.: The Relative Effectiveness of Concept-based Versus Content-based Video Retrieval. In: Proc. ACM Multimedia 2004, pp. 368–371. ACM Press, New York (2004)CrossRefGoogle Scholar
  12. 12.
    Golovchinsky, G.: Queries? Links? Is there a difference? In: Proc. CHI 1997, pp. 407–414. ACM Press, New York (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael G. Christel
    • 1
  • Ronald M. Conescu
    • 1
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghU.S.A.

Personalised recommendations