Retrieving Shapes Efficiently by a Qualitative Shape Descriptor: The Scope Histogram

  • A. Schuldt
  • B. Gottfried
  • O. Herzog
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4071)


Efficient image retrieval from large image databases is a challenging problem. In this paper we present a method offering constant time complexity for the comparison of two shapes. In order to achieve this, we extend the qualitative concept of positional-contrast by 86 new relations describing the position of a polygon w. r. t. its line segments. On this basis a histogram of the relations’ frequencies is computed for each shape. A useful property of our approach is that, due to the underlying concept of positional-contrast, it can be intuitively decided whether its combination with other features is promising. Especially, retrieval results of about 64% are achieved in the MPEG test with constant time complexity.


Line Segment Space Complexity Radius Ratio Retrieval Result Correct Match 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11), 832–843 (1983)MATHCrossRefGoogle Scholar
  2. 2.
    Attneave, F.: Some Informational Aspects of Visual Perception. Psychological Review 61, 183–193 (1954)CrossRefGoogle Scholar
  3. 3.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley and Sons, Inc., Chichester (1973)MATHGoogle Scholar
  4. 4.
    Garson, G.D., Biggs, R.S.: Analytic Mapping and Geographic Databases. Sage Publications, Newbury Park (1992)Google Scholar
  5. 5.
    Gottfried, B.: Reasoning about Intervals in Two Dimensions. In: IEEE Int. Conference on Systems, Man and Cybernetics. The Hague, pp. 5324–5332(2004)Google Scholar
  6. 6.
    Gottfried, B.: Shape from Positional-Contrast — Characterising Sketches with Qualitative Line Arrangements. Doctoral dissertation, University of Bremen (2005)Google Scholar
  7. 7.
    Gottfried, B.: Querying for Silhouettes by Qualitative Feature Schemes. In: DIAL 2006, 2nd IEEE Inter. Conf. on Document Image Analysis for Libraries (2006)Google Scholar
  8. 8.
    Hu, M.-K.: Visual Pattern Recognition by Moment Invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)CrossRefGoogle Scholar
  9. 9.
    Latecki, L.J., Lakämper, R.: Shape Similarity Measure Based on Correspondence of Visual Parts. IEEE PAMI 22(10), 1185–1190 (2000)Google Scholar
  10. 10.
    Latecki, L.J., Lakämper, R., Eckhardt, U.: Shape Descriptors for Non-rigid Shapes with a Single Closed Contour. In: IEEE CVPR, pp. 424–429 (2000)Google Scholar
  11. 11.
    Loncaric, S.: A Survey of Shape Analysis Techniques. Pattern Recognition 31, 983–1001 (1998)CrossRefGoogle Scholar
  12. 12.
    Mitzias, D.A., Mertzios, B.G.: Shape Recognition with a Neural Classifier Based on a Fast Polygon Approximation Technique. Pattern Recognition 27, 627–636 (1994)CrossRefGoogle Scholar
  13. 13.
    Rosin, P.L.: Assessing the Behaviour of Polygonal Approximation Algorithms. Pattern Recognition 36, 505–518 (2003)CrossRefGoogle Scholar
  14. 14.
    Steger, C.: On the Calculation of Arbitrary Moments of Polygons. Technical Report FGBV-96-05, Informatik IX, Technische Universität München (1996)Google Scholar
  15. 15.
    Zimmermann, K., Freksa, C.: Qualitative Spatial Reasoning Using Orientation, Distance, and Path Knowledge. Applied Intelligence 6, 49–58 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Schuldt
    • 1
  • B. Gottfried
    • 1
  • O. Herzog
    • 1
  1. 1.University of BremenCentre for Computing Technologies (TZI)Bremen

Personalised recommendations