Advertisement

Reversible Semi-fragile Image Authentication Using Zernike Moments and Integer Wavelet Transform

  • Xiaoyun Wu
  • Xiaoping Liang
  • Hongmei Liu
  • Jiwu Huang
  • Guoping Qiu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3919)

Abstract

Semi-fragile image authentication based on watermarking has drawn extensive attention. However, conventional watermarking techniques introduce irreversible distortions to the host signals and thus may not be allowable in some applications such as medical and military imaging. Though some reversible fragile authentication algorithms had been developed, reversible semi-fragile authentication presents a challenge. To the best of our knowledge, so far there are only two reversible semi-fragile authentication algorithms based on watermarking reported in the literature. The existing reversible semi-fragile authentication schemes have two shortcomings: i) Watermark security has not received attention; ii) They have weak capability to resist JPEG compression. In this paper, we propose a novel reversible semi-fragile image authentication scheme. The algorithm can distinguish malicious modification from incidental modification according to semi-fragile characteristics of Zernike moments magnitudes (ZMMs) of the low frequency subband in integer wavelet transform (IWT) domain of an image. Combining semi-fragile characteristics of ZMMs, the watermark can discern forgery attack, thus, improving watermark security. The algorithm can locate the tampered area of an image accurately while tolerating JPEG lossy compression at a low quality factor. Experimental results demonstrate the merits of the proposed algorithm.

Keywords

Authentication Scheme Watermark Scheme JPEG Compression Zernike Moment Marked Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yeung, M.M., Mintzer, F.: An invisible watermarking technique for image verification. In: Proc. of IEEE Int. Conf. on Image Processing, vol. 2, pp. 680–683 (1997)Google Scholar
  2. 2.
    Wong, P.W., Memon, N.: Secret and public key image watermarking schemes for image authentication and ownership verification. IEEE Trans. on Image Processing 10(10), 1593–1601 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Li, C.T., Yang, F.M., Lee, C.S.: Oblivious fragile watermarking scheme for image authentication. In: Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 4, pp. 3445–3448 (2002)Google Scholar
  4. 4.
    Kundur, D., Hatzinakos, D.: Towards a telltale watermark techniques for tamper-proofing. In: Proc. of IEEE Int. Conf. on Image Processing, vol. 2, pp. 409–413 (1998)Google Scholar
  5. 5.
    Lin, C.Y., Chang, S.F.: Semi-fragile watermarking for authenticating JPEG visual content. In: Proc. of SPIE Security and Watermarking of Multimedia Content II, vol. 3971, pp. 140–151 (2000)Google Scholar
  6. 6.
    Hu, J., Huang, J., Huang, D., Shi, Y.: Image fragile watermarking based on fusion of multi-resolution tamper detection. IEE Electronics Letters 38(24), 1512–1513 (2002)CrossRefGoogle Scholar
  7. 7.
    Lu, Z., Liu, C., Xu, D., Sun, S.: Semi-fragile image watermarking method based on index constrained vector quantization. IEE Electronics Letters 39(1), 35–36 (2003)CrossRefGoogle Scholar
  8. 8.
    Zhu, B., Swanson, M.D., Tewfik, A.H.: When Seeing isn’t Believeing. IEEE Trans. on Signal Processing 21(2), 40–49 (2004)CrossRefGoogle Scholar
  9. 9.
    Shi, Y., Ni, Z., Zou, D., Liang, C., Xuan, G.: Lossless data hiding: fundamentals, algorithms and applications. In: Proc. of IEEE Int. Conf. on Circuits and Systems, vol. 2, pp. 33–36 (2004)Google Scholar
  10. 10.
    Xuan, G., Zhu, J., Chen, J., Shi, Y., Ni, Z., Su, W.: Distortionless data hiding based on integer wavelet transform. IEE Electronics Letters 38(25), 1646–1648 (2002)CrossRefGoogle Scholar
  11. 11.
    Goljan, M., Fridrich, J., Du, R.: Distortion-free data embedding. In: Proceedings of 4th Information Hiding Workshop, pp. 27–41 (2001)Google Scholar
  12. 12.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. on Circuits and Systems for Video Technology 13(8), 890–896 (2003)CrossRefGoogle Scholar
  13. 13.
    Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Reversible data hiding. In: Proc of IEEE Int. Conf. on Image Processing, vol. 2, pp. 157–160 (2002)Google Scholar
  14. 14.
    Barton, J.M.: Method and apparatus for embedding authentication information within digital data, U.S. Patent 5, 646, 997 (1997)Google Scholar
  15. 15.
    Honsinger, C.W., Jones, P., Rabbani, M., Stoffel, J.C.: Lossless recovery of an original image containing embedded data, US Patent: 6, 278, 791 (2001)Google Scholar
  16. 16.
    Fridrich, J., Goljan, M., Du, R.: Invertible authentication. In: Proc. of SPIE Security and Watermarking of Multimedia Contents III, vol. 4314, pp. 197–208 (2001)Google Scholar
  17. 17.
    De Vleeschouwer, C., Delaigle, J.F., Macq, B.: Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans. on Multimedia 5(1), 97–105 (2003)CrossRefGoogle Scholar
  18. 18.
    Zou, D., Shi, Y., Ni, Z.: A semi-fragile lossless digital watermarking scheme based on integer wavelet transform. In: Proc. of IEEE Int. Conf. on Multimedia Signal Processing, pp. 195–198 (2004)Google Scholar
  19. 19.
    Katzenbeisser, S., Dittmann, J.: Malicious attacks on media authentication schemes based on invertible watermarks. In: Proc. of SPIE Security and Watermarking of Multimedia Content VI, vol. 5306, pp. 838–847 (2004)Google Scholar
  20. 20.
    Daubechies, I., Sweldens, W.: Factoring wavelet transform into lifting step. Journal of Fourier Analysis 4, 245–267 (1998)MathSciNetMATHGoogle Scholar
  21. 21.
    Calderbank, R., Daubechies, I., Sweldens, W., Yeo, B.L.: Wavelet transforms that map integers to integers. Journal of Applied and Computational Harmonic Analysis 5, 332–369 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(5), 489–497 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiaoyun Wu
    • 1
    • 2
  • Xiaoping Liang
    • 1
    • 2
  • Hongmei Liu
    • 1
    • 2
  • Jiwu Huang
    • 1
    • 2
  • Guoping Qiu
    • 3
  1. 1.School of Information Science and TechnologySun Yat-Sen UniversityGuangzhouChina
  2. 2.Guangdong Province Key Laboratory of Information SecurityP.R. China
  3. 3.School of Computer ScienceUniversity of NottinghamUK

Personalised recommendations