An Application of Relation Algebra to Lexical Databases

  • Uta Priss
  • L. John Old
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4068)


This paper presents an application of relation algebra to lexical databases. The semantics of knowledge representation formalisms and query languages can be provided either via a set-theoretic semantics or via an algebraic structure. With respect to formalisms based on n-ary relations (such as relational databases or power context families), a variety of algebras is applicable. In standard relational databases and in formal concept analysis (FCA) research, the algebra of choice is usually some form of Cylindric Set Algebra (CSA) or Peircean Algebraic Logic (PAL). A completely different choice of algebra is a binary Relation Algebra (RA). In this paper, it is shown how RA can be used for modelling FCA applications with respect to lexical databases.


Binary Relation Concept Lattice Relation Algebra Formal Context Neighbourhood Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreka, H., Nemeti, I., Sain, I.: Algebraic Logic. In: Gabbay (ed.) Handbook of Philosophical Logic. Kluwer, Dordrecht (1997)Google Scholar
  2. 2.
    Barabasi, A.L.: Linked: The New Science of Networks. Perseus Publishing (2002)Google Scholar
  3. 3.
    Codd, E.: A relational model for large shared data banks. Communications of the ACM 13(6) (1970)Google Scholar
  4. 4.
    Dyvik, H.: A Translational Basis for Semantics. In: Johansson, Oksefjell (eds.) Corpora and Crosslinguistic Research: Theory, Method and Case Studies, Rodopi, pp. 51–86 (1998)Google Scholar
  5. 5.
    Eklund, P., Groh, B., Stumme, G., Wille, R.: A contextual-logic extension of TOSCANA. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 453–667. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Frias, M., Veloso, P., Baum, G.: Fork Algebras: Past, Present and Future. Journal on Relational Methods in Computer Science 1, 181–216 (2004)Google Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis. In: Mathematical Foundations. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Henkin, L., Tarski, A.: Cylindric algebras. In: Dilworth, R.P. (ed.) Lattice Theory, Proceedings of Symposia in Pure Mathematics, AMS, pp. 83–113 (1961)Google Scholar
  9. 9.
    Hereth Correia, J., Pöschel, R.: The Power of Peircean Algebraic Logic (PAL). In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 337–351. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Imielinski, T., Lipski, W.: The relational model of data and cylindric algebras. Journal of Computer and Systems Sciences 28, 80–102 (1984)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kim, K.H.: Boolean Matrix Theory and Applications. Marcel Dekker Inc., New York (1982)MATHGoogle Scholar
  12. 12.
    Maddux, R.: The origin of relation algebras in the development and axiomatization of the calculus of relations. Studia Logica, 5(3-4), pp. 421–456 (1991)Google Scholar
  13. 13.
    Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The University of South Florida word association, rhyme, and word fragment norms (1998), available at:
  14. 14.
    Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet: an on-line lexical database. International Journal of Lexicography 3(4), 235–244 (1990)CrossRefGoogle Scholar
  15. 15.
    Pratt, V.R.: Origins of the Calculus of Binary Relations. In: Proc. IEEE Symp. on Logic in Computer Science, pp. 248–254 (1992)Google Scholar
  16. 16.
    Pratt, V.R.: The Second Calculus of Binary Relations. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 142–155. Springer, Heidelberg (1993)Google Scholar
  17. 17.
    Priss, U. (1998). Relational Concept Analysis: Semantic Structures in Dictionaries and Lexical Databases (PhD Thesis). Shaker Verlag, Aachen (1998)Google Scholar
  18. 18.
    Priss, U.: Lattice-based Information Retrieval. Knowledge Organization 27(3), 132–142 (2000)Google Scholar
  19. 19.
    Priss, U., Old, L.J.: Modelling Lexical Databases with Formal Concept Analysis. Journal of Universal Computer Science 10(8), 967–984 (2004)Google Scholar
  20. 20.
    Priss, U.: An FCA interpretation of Relation Algebra. In: Formal Concept Analysis. LNCS, Springer, Heidelberg (to appear, 2006)Google Scholar
  21. 21.
    Roget, P.M.: Roget’s International Thesaurus, 3rd edn. Thomas Crowell, New York (1962)Google Scholar
  22. 22.
    Strogatz, H.: Exploring complex networks. Nature 410, 268–276 (2001)CrossRefGoogle Scholar
  23. 23.
    Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Van den Bussche, J.: Applications of Alfred Tarski’s Ideas in Database Theory. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 20–37. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Wille, R.: Existential Concept Graphs of Power Context Families. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 382–395. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Wunderlich, D.: Arbeitsbuch Semantik. Athenaeum, Königstein/Ts (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Uta Priss
    • 1
  • L. John Old
    • 1
  1. 1.School of ComputingNapier University 

Personalised recommendations