DOGMA-MESS: A Meaning Evolution Support System for Interorganizational Ontology Engineering

  • Aldo de Moor
  • Pieter De Leenheer
  • Robert Meersman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4068)


In this paper, we explore the process of interorganizational ontology engineering. Scalable ontology engineering is hard to do in interorganizational settings where there are many pre-existing organizational ontologies and rapidly changing collaborative requirements. A complex socio-technical process of ontology alignment and meaning negotiation is therefore required. In particular, we are interested in how to increase the efficiency and relevance of this process using context dependencies between ontological elements. We describe the DOGMA-MESS methodology and system for scalable, community-grounded ontology engineering. We illustrate this methodology with examples taken from a case of interorganizational competency ontology evolution in the vocational training domain.


Domain Ontology Context Dependency Conceptual Graph Concept Type Ontology Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aschoff, F.-R., Schmalhofer, F., van Elst, L.: Knowledge mediation: A procedure for the cooperative construction of domain ontologies. In: Proc. of the ECAI 2004 Workshop on Agent-Mediated Knowledge Management, pp. 29–38 (2004)Google Scholar
  2. 2.
    De Leenheer, P., de Moor, A.: Context-driven disambiguation in ontology elicitation. In: Shvaiko, P., Euzenat, J. (eds.) Context and Ontologies: Theory, Practice, and Applications. Proc. of the 1st Context and Ontologies Workshop, AAAI/IAAI 2005, Pittsburgh, USA, July 9, 2005, pp. 17–24 (2005)Google Scholar
  3. 3.
    De Leenheer, P., de Moor, A., Meersman, R.: Context dependency management in ontology engineering. Technical Report STAR-2006-03-01, VUB STARLab, Brussel (March 2006)Google Scholar
  4. 4.
    de Moor, A.: Empowering Communities: A Method for the Legitimate User-Driven Specification of Network Information Systems. PhD thesis, Tilburg University, The Netherlands (1999) ISBN 90-5668-055-2Google Scholar
  5. 5.
    de Moor, A.: Ontology-guided meaning negotiation in communities of practice. In: Mambrey, P., Gräther, W. (eds.) Proc. of the Workshop on the Design for Large-Scale Digital Communities at the 2nd International Conference on Communities and Technologies (C&T 2005), Milano, Italy (June 2005)Google Scholar
  6. 6.
    de Moor, A.: Patterns for the pragmatic web. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 1–18. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Decker, S., Fensel, D., van Harmelen, F., Horrocks, I., Melnik, S., Klein, M., Broekstra, J.: Knowledge representation on the Web. In: Proc. of the 2000 International Workshop on Description Logics (DL2000), Aachen, Germany (2000)Google Scholar
  8. 8.
    Edgington, T., Choi, B., Henson, K., Raghu, T.S., Vinze, A.: Adopting ontology to facilitate knowledge sharing. Communications of the ACM 47(11), 217–222 (2004)CrossRefGoogle Scholar
  9. 9.
    Euzenat, J.: Building consensual knowledge bases: Context and architecture. In: Mars, N.J.I. (ed.) Towards Very Large Knowledge Bases - Proceedings of the KB&KS 1995 Conference, pp. 143–155. IOS Press, Amsterdam (1995)Google Scholar
  10. 10.
    Euzenat, J., Le Bach, T., Barrasa, J., et al.: State of the art on ontology alignment. In: Knowledge Web Deliverable KWEB/2004/d2.2.3/v1.2 (2004)Google Scholar
  11. 11.
    Ganter, B., Stumme, G.: Creation and merging of ontology top-levels. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 131–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  13. 13.
    Guha, R., Lenat, D.: Cyc: a midterm report. AI Magazine 11(3), 32–59 (1990)Google Scholar
  14. 14.
    Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. In: Proc. of the Dagstuhl Seminar on Semantic Interoperability and Integration, Dagstuhl, Germany (2005)Google Scholar
  15. 15.
    Mineau, G., Gerbé, O.: Contexts: A formal definition of worlds of assertions. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 80–94. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)MATHGoogle Scholar
  17. 17.
    Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontology engineering. SIGMOD Record 31(4), 12–17 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aldo de Moor
    • 1
  • Pieter De Leenheer
    • 1
  • Robert Meersman
    • 1
  1. 1.VUB STARLab, Semantics Technology and Applications Research LaboratoryVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations