Some Notes on Proofs with Alpha Graphs

  • Frithjof Dau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4068)


It is well-known that Peirce’s Alpha graphs correspond to propositional logic (PL). Nonetheless, Peirce’s calculus for Alpha graphs differs to a large extent to the common calculi for PL. In this paper, some aspects of Peirce’s calculus are exploited. First of all, it is shown that the erasure-rule of Peirce’s calculus, which is the only rule which does not enjoy the finite choice property, is admissible. Then it is shown that this calculus is faster than the common cut-free calculi for propositional logic by providing formal derivations with polynomial lengths of Statman’s formulas. Finally a natural generalization of Peirce’s calculus (including the erasure-rule) is provided such that we can find proofs linear in the number of propositional variables used in the formular, depending on the number of propositional variables in the formula.


Transformation Rule Propositional Logic Propositional Variable Formal Derivation Double Negation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Brü03]
    Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. PhD thesis, Technische Universität Dresden (2003)Google Scholar
  2. [Bur91]
    Burch, R.W.: A Peircean Reduction Thesis: The Foundation of Topological Logic. Texas Tech. University Press, Texas (1991)Google Scholar
  3. [BZ93]
    Baaz, M., Zach, R.: Short proofs of tautologies using the schema of equivalence. In: Meinke, K., Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 33–35. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. [Dau02]
    Dau, F.: An embedding of existential graphs into concept graphs with negations. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 326–340. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. [Dau04]
    Dau, F.: Types and tokens for logic with diagrams. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 62–93. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. [Dau06]
    Dau, F.: Mathematical logic with diagrams, based on the existential graphs of peirce. Habilitation thesis (to be published, 2006), available at:
  7. [DMS05]
    Dau, F., Mugnier, M.-L., Stumme, G. (eds.): Common Semantics for Sharing Knowledge: Contributions to ICCS 2005. Kassel University Press, Kassel (2005)Google Scholar
  8. [Ham95]
    Hammer, E.M.: Logic and Visual Information. CSLI Publications, Stanford (1995)MATHGoogle Scholar
  9. [HB35]
    Hartshorne, W., Burks (eds.): Collected Papers of Charles Sanders Peirce. Harvard University Press, Cambridge (1931-1935)Google Scholar
  10. [HK05]
    Hodgins, D.P., Kocura, P.: Propositional theorem prover for peirce-logik. In: Dau, et al. (eds.) [DMS 2005], pp. 203–204Google Scholar
  11. [Liu05]
    Liu, X.-W.: An axiomatic system for peirce’s alpha graphs. In: Dau, et al. (eds.) [DMN 2005], pp. 122–131Google Scholar
  12. [Pap83]
    Pape, H.: Charles S. Peirce: Phänomen und Logik der Zeichen. Suhrkamp Verlag Wissenschaft, Frankfurt am Main, Germany (1983); German translation of Peirce’s Syllabus of Certain Topics of LogicGoogle Scholar
  13. [Pei35]
    Peirce, C.S.: MS 478: Existential Graphs. Harvard University Press, (1931–1935); Partly published in of [HB35] (4.394-417). Complete german translation in [Pap83]Google Scholar
  14. [Pei92]
    Peirce, C.S.: Reasoning and the logic of things. In: Kremer, K.L., Putnam, H. (eds.) The Cambridge Conferences Lectures of 1898. Harvard Univ. Press, Cambridge (1992)Google Scholar
  15. [PS00]
    Peirce, C.S., Sowa, J.F.: Existential Graphs: MS 514 by Charles Sanders Peirce with commentary J. Sowa (1908) (2000),available at:
  16. [Rob73]
    Roberts, D.D.: The Existential Graphs of Charles S. Peirce. Mouton, The Hague (1973)Google Scholar
  17. [Rob92]
    Roberts, D.D.: The existential graphs. Computers Math. Appl. 23(6–9), 639–663 (1992)MATHCrossRefGoogle Scholar
  18. [Sch60]
    Schütte, K.: Beweistheorie. Springer, Heidelberg (1960)MATHGoogle Scholar
  19. [Shi02a]
    Shin, S.-J.: The Iconic Logic of Peirce’s Graphs. Bradford Book, Massachusetts (2002)MATHGoogle Scholar
  20. [Shi02b]
    Shin, S.-J.: Multiple readings in peirce’s alpha graphs. In: Anderson, M., Meyer, B., Olivier, P. (eds.) Diagrammatic Representation and Reasoning. Springer, Heidelberg (2002)Google Scholar
  21. [Sow84]
    Sowa, J.F.: Conceptual structures: information processing in mind and machine. Addison-Wesley, Reading (1984)MATHGoogle Scholar
  22. [Sow97]
    Sowa, J.F.: Logic: Graphical and algebraic, Croton-on-Hudson (1997) (manuscript)Google Scholar
  23. [Sta78]
    Statman, R.: Bounds for proof-search and speed-up in predicate calculus. Annals of Mathematical Logic 15, 225–287 (1978)MATHCrossRefMathSciNetGoogle Scholar
  24. [vH03]
    van Heuveln, B.: Existential graphs. (2003), Presentations and Applications at:
  25. [Yuk84]
    Yukami, T.: Some results on speed-up. Ann. Japan Assoc. Philos. Sci. 6, 195–205 (1984)MATHMathSciNetGoogle Scholar
  26. [Zem64]
    Zeman, J.J.: The Graphical Logic of C. S. Peirce. PhD thesis, University of Chicago (1964), available at:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Frithjof Dau
    • 1
  1. 1.Technische Universität DresdenDresdenGermany

Personalised recommendations