The MIEL++ Architecture When RDB, CGs and XML Meet for the Sake of Risk Assessment in Food Products

  • Patrice Buche
  • Juliette Dibie-Barthélemy
  • Ollivier Haemmerlé
  • Rallou Thomopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4068)


This article presents a data warehouse used for risk assessment in food products. The experimental data stored in this warehouse are heterogeneous, they may be imprecise; the data warehouse itself is incomplete by nature. The MIEL++ system – which is partially commercialized – is composed of three databases which are queried simultaneously, and which are expressed in three different data models: the relational model, the Conceptual Graph model and XML. Those models have been extended in order to allow the representation of fuzzy values. In the MIEL++ language, used to query the data warehouse, the end-users can express preferences in their queries by means of fuzzy sets. Fuzzy pattern matching techniques are used in order to compare preferences and imprecise values.


Query Language Data Warehouse Query Graph Conceptual Graph Imprecise Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buche, P., Haemmerlé, O.: Towards a unified querying system of both structured and semi-structured imprecise data using fuzzy views. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 207–220. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Thomopoulos, R., Buche, P., Haemmerlé, O.: Representation of weakly structured imprecise data for fuzzy querying. Fuzzy Sets and Systems 140(1), 111–128 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Haemmerlé, O., Buche, P., Thomopoulos, R.: The MIEL system: uniform interrogation of structured and weakly structured imprecise data. Journal of Intelligent Information Systems (to appear, 2006)Google Scholar
  4. 4.
    Buche, P., Dibie-Barthélemy, J., Haemmerlé, O., Hignette, G.: Fuzzy semantic tagging and flexible querying of xml documents extracted from the web. Journal of Intelligent Information Systems (to appear, 2006)Google Scholar
  5. 5.
    Buche, P., Dervin, C., Haemmerlé, O., Thomopoulos, R.: Fuzzy querying on incomplete, imprecise and heterogeneously structured data in the relational model using ontologies and rules. IEEE Transactions on Fuzzy Systems 3(13), 373–383 (2005)CrossRefGoogle Scholar
  6. 6.
    Sym’Previus. The sym’previus project (2006), Web site:
  7. 7. The project (2005), Web site:
  8. 8.
    Wiederhold, G.: Mediation in information systems. ACM Computing Surveys 27(2), 265–267 (1995)CrossRefGoogle Scholar
  9. 9.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dubois, D., Prade, H.: Possibility Theory - An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)MATHGoogle Scholar
  12. 12.
    Thomopoulos, R., Buche, P., Haemmerlé, O.: Different kinds of comparisons between fuzzy conceptual graphs. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, pp. 54–68. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Sowa, J.F.: Conceptual structures - Information processing in Mind and Machine. Addison-Welsey, Reading (1984)Google Scholar
  14. 14.
    Mugnier, M.L., Chein, M.: Représenter des connaissances et raisonner avec des graphes. Revue d’Intelligence Artificielle 10(1), 7–56 (1996)MATHGoogle Scholar
  15. 15.
    Gagliardi, H., Haemmerlé, O., Pernelle, N., Saïs, F.: A semantic enrichment of data tables applied to food risk assessment. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS (LNAI), vol. 3735, pp. 374–376. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Buche, P., Dibie-Barthélemy, J., Haemmerlé, O., Houhou, M.: Towards flexible querying of xml imprecise data in a data warehouse opened on the web. In: Christiansen, H., Hacid, M.-S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2004. LNCS (LNAI), vol. 3055, pp. 28–40. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Genest, D.: Cogitant v-5.1 - manuel de référence (2003), Web site:
  18. 18.
    Salvat, E., Mugnier, M.L.: Sound and complete forward and backward chainings of graph rules. In: Eklund, P., Mann, G.A., Ellis, G. (eds.) ICCS 1996. LNCS (LNAI), vol. 1115, pp. 248–262. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Patrice Buche
    • 1
  • Juliette Dibie-Barthélemy
    • 1
  • Ollivier Haemmerlé
    • 2
  • Rallou Thomopoulos
    • 3
  1. 1.Unité INRA Mét@riskParis
  2. 2.Département de Mathématiques-InformatiqueGRIMM-ISYCOM, Université de Toulouse le MirailToulouse
  3. 3.INRA – UMR IATE – bat. 31Montpellier

Personalised recommendations