Advertisement

Finding a Path to Model Consistency

  • Gregory de Fombelle
  • Xavier Blanc
  • Laurent Rioux
  • Marie-Pierre Gervais
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4066)

Abstract

A core problem in Model Driven Engineering is model consistency achievement: all models must satisfy relationships constraining them. Active consistency techniques monitor and control models edition for preventing inconsistencies, e.g., using automatic errors correction. The main problem of these approaches is that strict enforcement of consistency narrows the modeler’s possibilities for exploring conflicting or tradeoff solutions; this is just what temporaries inconsistencies enable. In this article, we propose a hybrid approach capitalizing on active consistency characteristics while allowing the user to edit inconsistent models in a managed mode: at any moment we are able to propose a sequence of modelling operations that, when executed, make the model consistent. The solution consists in defining a set of automatons capturing a sufficient part of the model state space for managing any inconsistent situation. We illustrate this approach on a consistency relationship implied by the application of a security design pattern impacting both class and sequence diagrams of a UML2 model.

Keywords

Model State Space Sequence Diagram Consistency Relationship Model Consistency Modelling Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency Handling in Multiperspective Specifications. IEEE Transactions on Software Engineering 20, 569–577 (1994)CrossRefGoogle Scholar
  2. 2.
    Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the relationships between multiple views in requirements specification. IEEE Transactions on Software Engineering 20 (1994)Google Scholar
  3. 3.
    Engels, G., Küster, J.M.: Consistency Management Within Model-Based Object-Oriented Development of Components. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 157–176. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Finkelstein, A.: A Foolish consistency: Technical challenges in Consistency Management. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 1–5. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Spanoudakis, G., Zisman, A.: Inconsistency Management in Software Engineering: Survey and Open Research Issues. In: Chang, S.K. (ed.) Handbook of Software Engineering and Knowledge Engineering (2001)Google Scholar
  6. 6.
    Engels, G., Kuster, J., Heckel, R.: Toward Consistency preserving model evolution. In: ACM (ed.) IWPSE, Orlando (2002)Google Scholar
  7. 7.
    Engels, G., Heckel, R., Kuster, J., Groenewegen, L.: Consistency-Preserving Model Evolution through Transformations. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, p. 212. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Heath, Blakley, B.: Security Design Patterns (2004)Google Scholar
  9. 9.
    Sourrouille, J.-L., Caplat, G.: Checking UML Model Consistency. In: Workshop on Consistency Problems in UML based software development I, Dresden, Germany (2002)Google Scholar
  10. 10.
    OMG, MOF 2.0/XMI Mapping Specification, v2.1 (2005)Google Scholar
  11. 11.
    OMG, MOF 2.0 Query/View/Transformation (2005)Google Scholar
  12. 12.
    Van Der Straeten, R., Mens, T., Simmonds, J.: Maintaining Consistency between UML models using description logics. In: Workshop on Consistency Problems in UML based software development II, San Francisco, USA (2003)Google Scholar
  13. 13.
    Snoeck, M., Michiels, C., Dedene, G.: Consistency by construction: the case of MERODE. In: Jeusfeld, M.A., Pastor, Ó. (eds.) ER Workshops 2003. LNCS, vol. 2814, pp. 105–117. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cambridge (2001)Google Scholar
  15. 15.
    Wagner, R.: A Plug-in for flexible and incremental consistency management. In: Workshop on Consistency Problems in UML based software development II, San Francisco, USA (2003)Google Scholar
  16. 16.
    Huzar, Z., Kuzniarz, L., Regio, G., Sourrouille, J.L.: Consistency Problems in UML-based Software Development - Workshop proceedings. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, p. 2002. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Huzar, Z., Kuzniarz, L., Regio, G., Sourrouille, J.L.: Consistency problems in UML-based Software Development II - Workshop proceedings. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Huzar, Z., Kuzniarz, L., Regio, G., Sourrouille, J.L.: Consistency Problems in UML-based Software Development III - Understanding and Usage of Dependency Relationships - Workshop proceedings. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gregory de Fombelle
    • 1
    • 2
  • Xavier Blanc
    • 2
  • Laurent Rioux
    • 1
  • Marie-Pierre Gervais
    • 2
  1. 1.Thales Research and Technology, RD 128Palaiseaux
  2. 2.Laboratoire d’informatique de Paris 6Université Paris 6Paris

Personalised recommendations