Advertisement

Dynamic Logic Semantics for UML Consistency

  • Greg O’Keefe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4066)

Abstract

The Unified Modelling Language (UML) is intended to describe systems, but it is not clear what systems satisfy a given collection of UML diagrams. Stephen Mellor has described a small collection of diagrams which appear to be inconsistent, yet are “cool” according to UML. We describe an approach to defining semantics for UML diagrams using dynamic logic, and show that Mellor’s example is inconsistent, given a reasonable assumption. Our approach interprets all diagrams, static and dynamic, in a single semantic space. The modeller specifies how the meaning of a model is made up from the meanings of its diagrams, thus the “viewpoint” taken by each diagram is made explicit. This composition is achieved through formation of the dynamic logic formulae. It is therefore very flexible, and we propose it as a means for defining semantics for domain specific languages, and for specifying “bridges” or “weaving” model transformations used in aspect oriented modelling.

Keywords

Class Diagram Sequence Diagram Formal Semantic Dynamic Logic Array Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W., Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Software and System Modeling 4(1), 32–54 (2005)CrossRefGoogle Scholar
  2. 2.
    Beckert, B.: A dynamic logic for the formal verification of java card programs. In: Attali, I., Jensen, T. (eds.) JavaCard 2000. LNCS, vol. 2041, pp. 6–24. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Beckert, B., Keller, U., Schmitt, P.H.: Translating the object constraint language into first-order predicate logic. In: Proceedings of VERIFY, Workshop at Federated Logic conferences (FLoC) (2002)Google Scholar
  4. 4.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D., Haehnle, R., Posegga, J. (eds.) Handbook of Tableau Methods. Kluwer, Dordrecht (1999), http://rsise.anu.edu.au/~rpg/Publications/Handbook-Tableau-Methods/TR-ARP-15-95.ps.gz Google Scholar
  5. 5.
    Damm, W., Josko, B., Pnueli, A., Votintseva, A.: Understanding UML: A formal semantics of concurrency and communication in real-time UML. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp. 71–98. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling: A graphical approach to the operational semantics of behavioural diagrams in UML. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–337. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)MATHGoogle Scholar
  8. 8.
    Henderson-Sellers, B.: UML - the good, the bad or the ugly? perspectives from a panel of experts. Software and System Modeling 4(1), 4–13 (2005)CrossRefGoogle Scholar
  9. 9.
    Mellor, S.J.: A framework for aspect-oriented modelling. In: The 4th AOSD Modeling With UML Workshop (2003)Google Scholar
  10. 10.
    Mellor, S.J., Balcer, M.J.: Executable UML, A Foundation for Model-Driven Architecture. Object Technology Series. Addison-Wesley, Reading (2002)Google Scholar
  11. 11.
    Object Management Group. Unified modeling language: Superstructure. Technical report, Object Management Group (August 2005), http://www.omg.org/docs/formal/05-07-04.pdf
  12. 12.
    Peleg, D.: Concurrent dynamic logic. Journal of the ACM 34(2), 450–479 (1987)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Reggio, G., Cerioli, M., Astesiano, E.: Towards a rigourous semantics of UML supporting its multiview approach. In: Hussmann, H. (ed.) ETAPS 2001 and FASE 2001. LNCS, vol. 2029, pp. 171–186. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Selic, B.V.: On the semantic foundations of standard UML 2.0. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 181–199. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Shlaer, S., Mellor, S.J.: Object Lifecycles: Modeling the World in States. Yourdon Press (1992)Google Scholar
  16. 16.
    Wieringa, R.J., Saake, G.: A formal analysis of the Shlaer-Mellor method: Towards a toolkit of formal and informal requirements specification techniques. Requirements Engineering, 106–131 (1996)Google Scholar
  17. 17.
    Wieringa, R., Broerson, J.: Minimal transition system semantics for lightweight class and behaviour diagrams. In: Broy, M., Coleman, D., Maibaum, T.S.E., Rumpe, B. (eds.) Proceedings PSMT 1998 Workshop on Precise Semantics for Modeling Techniques, Technische Universitaet Muenchen, TUM-I9803 (April 1997) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Greg O’Keefe
    • 1
  1. 1.Research School of Information Science and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations