New Extensions of Pairing-Based Signatures into Universal Designated Verifier Signatures

  • Damien Vergnaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4052)


The concept of universal designated verifier signatures was introduced by Steinfeld, Bull, Wang and Pieprzyk at Asiacrypt 2003. We propose two new efficient constructions for pairing-based short signatures. The first scheme is based on Boneh-Boyen signatures and, its security can be analyzed in the standard security model. We reduce its resistance to forgery to the hardness of the strong Diffie-Hellman problem, under the knowledge-of-exponent assumption. The second scheme is compatible with the Boneh-Lynn-Shacham signatures and is proven unforgeable, in the random oracle model, under the assumption that the computational bilinear Diffie-Hellman problem is untractable. Both schemes are designed for devices with constrained computation capabilities since the signing and the designation procedure are pairing-free.


Signature Scheme Random Oracle Random Oracle Model Short Signature Universal Designate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellare, M., Palacio, A.: In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: Proceedings of the First ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM J. Comput. 32(3), 586–615 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boneh, D., Lynn, B., Shacham, H.: D. Boneh, B. Lynn H. Shacham. Short Signatures from the Weil Pairing 17(4), 297–319 (2004) MATHMathSciNetGoogle Scholar
  6. 6.
    Coron, J.-S.: On the Exact Security of Full Domain Hash. In: Advances in Cryptology. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Damgård, I.B.: Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)Google Scholar
  8. 8.
    Gjøsteen, K.: A New Security Proof for Damgård’s ElGamal. In: Topics in Cryptology - CT-RSA. LNCS, vol. 3860, pp. 150–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput 17(2), 281–308 (1988)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Laguillaumie, F., Paillier, P., Vergnaud, D.: Universally Convertible Directed Signatures. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 682–701. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Laguillaumie, F., Vergnaud, D.: Multi-designated Verifiers Signatures. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 495–507. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    : Designated Verifier Signatures: Anonymity and Efficient Construction from any Bilinear Map. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 107–121. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Ng, C.Y., Susilo, W., Mu, Y.: Universal Designated Multi Verifier Signature Schemes. In: International Workshop on Security in Networks and Distributed Systems. SNDS, pp. 305–309. IEEE Press, Los Alamitos (2005)Google Scholar
  15. 15.
    Ogata, W., Kurosawa, K., Heng, S.-H.: The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 328–345. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    D. Vergnaud – New Extensions of Pairing-based Signatures into Universal (Multi) Designated Verifier Signatures. submitted (2006)Google Scholar
  17. 17.
    Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal Designated-Verifier Signatures. In: Advances in Cryptology. LNCS, vol. 2894, pp. 523–542. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Zhang, R., Furukawa, J., Imai, H.: Short Signature and Universal Designated Verifier Signature without Random Oracles. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 483–498. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Damien Vergnaud
    • 1
  1. 1.Laboratoire de Mathématiques Nicolas OresmeUniversité de CaenCaenFrance

Personalised recommendations