Timed Petri Nets and Timed Automata: On the Discriminating Power of Zeno Sequences

  • Patricia Bouyer
  • Serge Haddad
  • Pierre-Alain Reynier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4052)


Timed Petri nets and timed automata are two standard models for the analysis of real-time systems. In this paper, we prove that they are incomparable for the timed language equivalence. Thus we propose an extension of timed Petri nets with read-arcs (RA-TdPN), whose coverability problem is decidable. We also show that this model unifies timed Petri nets and timed automata. Then, we establish numerous expressiveness results and prove that Zeno behaviours discriminate between several sub-classes of RA-TdPNs. This has surprising consequences on timed automata, e.g. on the power of non-deterministic clock resets.


Coverability Problem Expressive Power Time Automaton Silent Action Relative Expressiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P.A., Mahata, P., Mayr, R.: Decidability of Zenoness, syntactic boundedness and token-liveness for dense-timed petri nets. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 58–70. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Nylén, A.: Timed Petri nets and bqos. In Proc. 22nd Int. Conf. Application and Theory of Petri Nets (ICATPN’01). In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Transactions in Software Engineering 17(3), 259–273 (1991)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theoretical Computer Science 321(2–3), 291–345 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bouyer, P., Haddad, S., Reynier, P.-A.: Timed Petri nets and timed automata: On the discriminating power of Zeno sequences. In: Research Report LSV-06-06, ENS de Cachan, France (2006)Google Scholar
  7. 7.
    Bouyer, P., Haddad, S., Reynier, P.-A.: Timed unfoldings of networks of timed automata. In: Research Report LSV-06-09, ENS de Cachan, France (2006)Google Scholar
  8. 8.
    Girault, C., Valk, R. (eds.): Petri Nets for Systems Engineering. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Mahata, P.: Model Checking Parameterized Timed Systems. PhD thesis, Dept. Information Technology, Uppsala University, Sweden (2005)Google Scholar
  10. 10.
    Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6), 545–596 (1995)MATHMathSciNetGoogle Scholar
  11. 11.
    Srba, J.: Timed-arc Petri nets vs. networks of timed automata. In Proc. 26th International Conference Application and Theory of Petri Nets (ICATPN’05). In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 385–402. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Valero Ruiz, V., Cuartero Gomez, F., de Frutos-Escrig, D.: On non-decidability of reachability for timed-arc Petri nets. In: Proc. 8th Int. Work. Petri Nets and Performance Models (PNPM 2003), pp. 188–196. IEEE Computer Society Press, Los Alamitos (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Serge Haddad
    • 2
  • Pierre-Alain Reynier
    • 1
  1. 1.LSV, CNRS & ENS CachanFrance
  2. 2.LAMSADE, CNRS & Université Paris-DauphineFrance

Personalised recommendations