Abstract
We provide a complete description of the Wadge hierarchy for deterministically recognizable sets of infinite trees. In particular we give an elementary procedure to decide if one deterministic tree language is continuously reducible to another. This extends Wagner’s results on the hierarchy of ω-regular languages to the case of trees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duparc, J.: A hierarchy of deterministic context-free ω-languages. Theoret. Comput. Sci. 290, 1253–1300 (2003)
Finkel, O.: Wadge Hierarchy of Omega Context Free Languages. Theoret. Comput. Sci. 269, 283–315 (2001)
Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics 156 (1995)
Kupferman, O., Safra, S., Vardi, M.: Relating Word and Tree Automata. 11th IEEE Symp. on Logic in Comput. Sci, 322–332 (1996)
Murlak, F.: On deciding topological classes of deterministic tree languages. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 428–441. Springer, Heidelberg (2005)
F. Murlak. The Wadge hierarchy of deterministic tree languages. Draft version, http://www.mimuw.edu.pl/~fmurlak/papers/conred.pdf
Niwiński, D., Walukiewicz, I.: Relating hierarchies of word and tree automata. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 320–331. Springer, Heidelberg (1998)
Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages. Theoret. Comput. Sci. 303, 215–231 (2003)
Niwiński, D., Walukiewicz, I.: Deciding nondeterministic hierarchy of deterministic tree automata. In: Proc. WoLLiC 2004. Electronic Notes in Theoret. Comp. Sci, pp. 195–208 (2005)
Perrin, D., Pin, J.-E.: Infinite Words. Automata, Semigroups, Logic and Games. In: Pure and Applied Mathematics, vol. 141, Elsevier, Amsterdam (2004)
Selivanov, V.: Wadge Degrees of ω-languages of deterministic Turing machines. Theoret. Informatics Appl. 37, 67–83 (2003)
Skurczyński, J.: The Borel hierarchy is infinite in the class of regular sets of trees. Theoret. Comput. Sci. 112, 413–418 (1993)
Urbański, T.F.: On deciding if deterministic Rabin language is in Büchi class. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 663–674. Springer, Heidelberg (2000)
Wagner, K.: Eine topologische Charakterisierung einiger Klassen regulärer Folgenmengen. J. Inf. Process. Cybern. EIK 13, 473–487 (1977)
Wagner, K.: On ω-regular sets. Inform. and Control 43, 123–177 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Murlak, F. (2006). The Wadge Hierarchy of Deterministic Tree Languages. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11787006_35
Download citation
DOI: https://doi.org/10.1007/11787006_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35907-4
Online ISBN: 978-3-540-35908-1
eBook Packages: Computer ScienceComputer Science (R0)