Half-Positional Determinacy of Infinite Games

  • Eryk Kopczyński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4052)


We study infinite games where one of the players always has a positional (memory-less) winning strategy, while the other player may use a history-dependent strategy. We investigate winning conditions which guarantee such a property for all arenas, or all finite arenas. We establish some closure properties of such conditions, and discover some common reasons behind several known and new positional determinacy results. We exhibit several new classes of winning conditions having this property: the class of concave conditions (for finite arenas) and the classes of monotonic conditions and geometrical conditions (for all arenas).


Geometrical Condition Closure Property Countable Union Monotonic Condition Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BSW03]
    Walukiewicz, I., Bouquet, A.-J., Serre, O.: Pushdown Games with Unboundedness and Regular Conditions. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 88–99. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. [CDT02]
    Cachat, T., Duparc, J., Thomas, W.: Pushdown games with a Σ3 winning condition. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 322–336 (2002)Google Scholar
  3. [CN06]
    Colcombet, T., Niwiński, D.: On the positional determinacy of edge-labeled games. Theor. Comput. Sci. 352, 190–196 (2006)MATHCrossRefGoogle Scholar
  4. [EJ91]
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proceedings 32th Annual IEEE Symp. on Foundations of Comput, pp. 368–377. IEEE Computer Society Press, Sci (1991)Google Scholar
  5. [EM79]
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. IJGT 8, 109–113 (1979)MATHCrossRefMathSciNetGoogle Scholar
  6. [Gim04]
    Gimbert, H.: Parity and Exploration Games on Infinite Graphs. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 56–70. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. [Gra04]
    Grädel, E.: Positional Determinacy of Infinite Games. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 4–18. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. [GTW02]
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. Lecture Notes in Compter Science, vol. 2500. Springer, Heidelberg (2002)MATHGoogle Scholar
  9. [GZ04]
    Gimbert, H., Zielonka, W.: When can you play positionally? Proc. of MFCS ’04. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 686–697. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. [GZ05]
    Zielonka, W., Gimbert, H.: Games Where You Can Play Optimally Without Any Memory. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 428–442. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [Kla92]
    Klarlund, N.: Progress measures, immediate determinacy, and a subset construction for tree automata. In: Proc. 7th IEEE Symp. on Logic in Computer Science (1992)Google Scholar
  12. [Kop06]
    E. Kopczyński, Half-positional determinacy of infinite games. Draft.
  13. [Mar75]
    Martin, D.A.: Borel determinacy. Ann. Math. 102, 363–371 (1975)CrossRefGoogle Scholar
  14. [McN93]
    McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied Logic 65, 149–184 (1993)MATHCrossRefMathSciNetGoogle Scholar
  15. [Mos91]
    Mostowski, A.W.: Games with forbidden positions. Technical Report 78, Uniwersytet Gdański, Instytut Matematyki (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eryk Kopczyński
    • 1
  1. 1.Institute of InformaticsWarsaw University 

Personalised recommendations