A Probabilistic Hoare-style Logic for Game-Based Cryptographic Proofs

  • Ricardo Corin
  • Jerry den Hartog
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4052)


We extend a Probabilistic Hoare-style logic to formalize game-based cryptographic proofs. Our approach provides a systematic and rigorous framework, thus preventing errors from being introduced. We illustrate our technique by proving semantic security of ElGamal.


Signature Scheme Probabilistic Choice Security Proof Deterministic State Security Notion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paulin-Mohring, C., Audebaud, P.: Proofs of Randomized Algorithms in Coq. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 49–68. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    M. Bellare and P. Rogaway. The game-playing technique, December 2004. At http://www.cs.ucdavis.edu/~rogaway/papers/games.html.
  3. 3.
    Blanchet, B.: A computationally sound mechanized prover for security protocols. In: IEEE Symposium on Security and Privacy, Oakland, California (2006)Google Scholar
  4. 4.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer-Verlag, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    R. Corin and J. den Hartog. A probabilistic hoare-style logic for game-based cryptographic proofs 2006.(long version, http://eprint.iacr.org/2005/467)
  6. 6.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Filliâtre, J.-C.: Why: a multi-language multi-prover verification tool. Technical report, LRI, Université Paris Sud (2003)Google Scholar
  8. 8.
    Galindo, D.: Boneh-franklin identity based encryption revisited. In: ICALP, pp. 791–802 (2005)Google Scholar
  9. 9.
    Halevi, S.: A plausible approach to computer-aided cryptographic proofs (2005), At http://eprint.iacr.org/2005/181/
  10. 10.
    den Hartog, J.I.: Probabilistic Extensions of Semantical Models. In: PhD thesis (2002)Google Scholar
  11. 11.
    den Hartog, J.I., de Vink, E.P.: Verifying probabilistic programs using a Hoare like logic. Int. Journal of Foundations of Computer Science 13(3), 315–340 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12, 576–580 (1969)MATHCrossRefGoogle Scholar
  13. 13.
    Hooman, J.: Program design in PVS. In: Workshop on Tool Support for System Development and Verification, Germany (1997)Google Scholar
  14. 14.
    Gordon, M.J.C.: Mechanizing programming logics in higher-order logic. In: Proc. of the Workshop on Hardware Verification, pp. 387–439. Springer, Heidelberg (1988)Google Scholar
  15. 15.
    Ramanathan, A., Mitchell, J.C., Scedrov, A., Teague, V.: Probabilistic bisimulation and equivalence for security analysis of network protocols. In: FoSSaCS, pp. 468–483 (2004)Google Scholar
  16. 16.
    V. Shoup. Sequences of games: a tool for taming complexity in security proofs, May 2005.At http://www.shoup.net/papers/games.pdf.
  17. 17.
    Tarento, S.: Machine-checked security proofs of cryptographic signature schemes. In: ESORICS, pp. 140–158 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ricardo Corin
    • 1
  • Jerry den Hartog
    • 1
  1. 1.Department of Computer ScienceUniversity of TwenteThe Netherlands

Personalised recommendations