Dynamic Routing Schemes for General Graphs

(Extended Abstract)
  • Amos Korman
  • David Peleg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)


This paper studies approximate distributed routing schemes on dynamic communication networks. The paper focuses on dynamic weighted general graphs where the vertices of the graph are fixed but the weights of the edges may change. Our main contribution concerns bounding the cost of adapting to dynamic changes. The update efficiency of a routing scheme is measured by the number of messages that need to be sent, following a weight change, in order to update the scheme. Our results indicate that the graph theoretic parameter governing the amortized message complexity of these updates is the local density D of the underlying graph, and specifically, this complexity is \({\tilde\Theta}(D)\). The paper also establishes upper and lower bounds on the size of the databases required by the scheme at each site.


Span Tree Topological Change General Graph Database Size Message Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.: Local management of a global resource in a communication network. J. ACM 43, 1–19 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Afek, Y., Gafni, E., Ricklin, M.: Upper and lower bounds for routing schemes in dynamic networks. In: Proc. 30th Symp. on Foundations of Computer Science, pp. 370–375 (1989)Google Scholar
  3. 3.
    Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved routing strategies with succinct tables. J. Algorithms 11, 307–341 (1990)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Awerbuch, B., Peleg, D.: Routing with polynomial communication-space trade-off. SIAM J. Discrete Math. 5, 307–341 (1992)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38, 170–183 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dolev, S., Kranakis, E., Krizanc, D., Peleg, D.: Bubbles: Adaptive routing scheme for high-speed dynamic networks. SIAM J. on Comput. 29, 804–833 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic Graph Algorithms. In: Atallah, M.J. (ed.) Algorithms and Theoretical Computing Handbook, ch.8, CRC Press, Boca Raton (1999)Google Scholar
  8. 8.
    Fraigniaud, P., Gavoille, C.: Universal routing schemes. Distributed Computing 10, 65–78 (1997)CrossRefGoogle Scholar
  9. 9.
    Feigenbaum, J., Kannan, S.: Dynamic Graph Algorithms. In: Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca Raton (2000)Google Scholar
  10. 10.
    Gavoille, C.: Routing in distributed networks: Overview and open problems. ACM SIGACT News-Distributed Computing Column 32, 36–52 (2001)CrossRefGoogle Scholar
  11. 11.
    Iwama, K., Kawachi, A.: Compact routing with stretch factor less than three. In: Proc. 19th ACM Symp. on Principles of Distributed Computing, p. 337 (2000)Google Scholar
  12. 12.
    Iwama, K., Okita, M.: Compact Routing for Flat Networks. In: Proc. 17th International Simposium on Distributed Computing (October 2003)Google Scholar
  13. 13.
    Korman, A.: General Compact Labeling Schemes for Dynamic Trees. In: Proc. 19th International Simposium on Distributed Computing (September 2005)Google Scholar
  14. 14.
    Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks. Theory of Computing Systems 37, 49–75 (2004)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Korman, A., Peleg, D.: Labeling schemes for weighted dynamic trees. In: Proc. 30th Int. Colloq. on Automata, Languages and Prog, July 2003, pp. 369–383 (2003)Google Scholar
  16. 16.
    Peleg, D.: Distributed computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)MATHCrossRefGoogle Scholar
  17. 17.
    Peleg, D., Upfal, E.: A tradeoff between size and efficiency for routing tables. J. ACM 36, 510–530 (1989)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Santoro, N., Khatib, R.: Labeling and implicit routing in networks. The Computer Journal 28, 5–8 (1985)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architectures, July 2001, pp. 1–10 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Amos Korman
    • 1
  • David Peleg
    • 2
  1. 1.Information Systems Group, Faculty of IE&MThe TechnionHaifaIsrael
  2. 2.Department of Computer ScienceWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations