New Constructions of Mechanisms with Verification

  • Vincenzo Auletta
  • Roberto De Prisco
  • Paolo Penna
  • Giuseppe Persiano
  • Carmine Ventre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)


A social choice function A is implementable with verification if there exists a payment scheme P such that (A,P) is a truthful mechanism for verifiable agents [Nisan and Ronen, STOC 99]. We give a simple sufficient condition for a social choice function to be implementable with verification for comparable types. Comparable types are a generalization of the well-studied one-parameter agents. Based on this characterization, we show that a large class of objective functions μ admit social choice functions that are implementable with verification and minimize (or maximize) μ. We then focus on the well-studied case of one-parameter agents. We give a general technique for constructing efficiently computable social choice functions that minimize or approximately minimize objective functions that are non-increasing and neutral (these are functions that do not depend on the valuations of agents that have no work assigned to them). As a corollary we obtain efficient online and offline mechanisms with verification for some hard scheduling problems on related machines.


Schedule Problem Completion Time Greedy Algorithm Full Version Social Choice Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nisan, N., Ronen, A.: Algorithmic Mechanism Design. In: Proc. of the STOC, pp. 129–140 (1999)Google Scholar
  2. 2.
    Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents. In: Proc. of FOCS, pp. 482–491 (2001)Google Scholar
  3. 3.
    Auletta, V., De Prisco, R., Penna, P., Persiano, G.: The power of verification for one-parameter agents. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 171–182. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Myerson, R.: Optimal auction design. Mathematics of Operations Research 6, 58–73 (1981)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Vickrey, W.: Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of Finance, 8–37 (1961)Google Scholar
  6. 6.
    Clarke, E.: Multipart Pricing of Public Goods. Public Choice, 17–33 (1971)Google Scholar
  7. 7.
    Groves, T.: Incentive in Teams. Econometrica 41, 617–631 (1973)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lavi, R., Mu’Alem, A., Nisan, N.: Towards a characterization of truthful combinatorial auctions. In: Proc. of FOCS (2003)Google Scholar
  9. 9.
    Gui, H., Muller, R., Vohra, R.V.: Dominant strategy mechanisms with multidimensional types. Technical report (2004)Google Scholar
  10. 10.
    Saks, M., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains. In: Proc. of EC, pp. 286–293 (2005)Google Scholar
  11. 11.
    Auletta, V., De Prisco, R., Penna, P., Persiano, G.: On designing truthful mechanisms for online scheduling. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 3–17. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Hajiaghayi, M.T., Kleinberg, R.D., Mahdian, M., Parkes, D.C.: Online auctions with re-usable goods. In: Proc. of EC 2005, pp. 165–174 (2005)Google Scholar
  13. 13.
    Porter, R.: Mechanism design for online real-time scheduling. In: Proc. of EC 2004, pp. 61–70 (2004)Google Scholar
  14. 14.
    Mu’Alem, A., Nisan, N.: Truthful approximation mechanisms for restricted combinatorial auctions. In: Proc. of 18th AAAI, pp. 379–384 (2002)Google Scholar
  15. 15.
    Rochet, J.C.: A condition for rationalizability in a quasi-linear context. Journal of Mathematical Economics 16, 191–200 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)Google Scholar
  17. 17.
    Chekuri, C., Khanna, S.: A PTAS for minimizing weighted completion time on uniformly related machines. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Chudak, F., Shmoys, D.: Approximation algorithms for precedence-constrained scheduling problems on parallel machines that run at different speeds. Journal of Algorithms 30(2), 323–343 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vincenzo Auletta
    • 1
  • Roberto De Prisco
    • 1
  • Paolo Penna
    • 1
  • Giuseppe Persiano
    • 1
  • Carmine Ventre
    • 1
  1. 1.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoItaly

Personalised recommendations