Network Games with Atomic Players

  • Roberto Cominetti
  • José R. Correa
  • Nicolás E. Stier-Moses
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)


We study network and congestion games with atomic players that can split their flow. This type of games readily applies to competition among freight companies, telecommunication network service providers, intelligent transportation systems and manufacturing with flexible machines. We analyze the worst-case inefficiency of Nash equilibria in those games and conclude that although self-interested agents will not in general achieve a fully efficient solution, the loss is not too large. We show how to compute several bounds for the worst-case inefficiency, which depend on the characteristics of cost functions and the market structure in the game. In addition, we show examples in which market aggregation can adversely impact the aggregated competitors, even though their market power increases. When the market structure is simple enough, this counter-intuitive phenomenon does not arise.


Nash Equilibrium Market Power Intelligent Transportation System Social Optimum Congestion Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman, E., Başar, T., Jimenez, T., Shimkin, N.: Competitive routing in networks with polynomial costs. IEEE Transactions on Automatic Control 47, 92–96 (2002)CrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: STOC, NY, pp. 57–66 (2005)Google Scholar
  3. 3.
    Boulogne, T.: Nonatomic Strategic Games and Applications to Networks. PhD thesis, Université Paris 6, Paris, France (December 2004)Google Scholar
  4. 4.
    Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung, 12, 258–268 (1968): An English translation appears in Transportation Science, 39(4), 446–450 (November 2005)Google Scholar
  5. 5.
    Chau, C.K., Sim, K.M.: The price of anarchy for non-atomic congestion games with symmetric cost maps and elastic demands. Operations Research Letters 31, 327–334 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: STOC, NY, pp. 67–73 (2005)Google Scholar
  7. 7.
    Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish routing in capacitated networks. Mathematics of Operations Research 29, 961–976 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: On the inefficiency of equilibria in congestion games. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 167–181. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general network. Journal of Research of the U.S. National Bureau of Standards 73B, 91–118 (1969)MathSciNetGoogle Scholar
  10. 10.
    Dubey, P.: Inefficiency of Nash equilibria. Mathematics of Operations Research 11, 1–8 (1986)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fotakis, D., Kontogiannis, S.C., Spirakis, P.G.: Selfish unsplittable flows. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 593–605. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Harker, P.T.: Multiple equilibrium behaviors of networks. Transportation Science 22, 39–46 (1988)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Haurie, A., Marcotte, P.: On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15, 295–308 (1985)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hayrapetyan, A., Tardos, É., Wexler, T.: Collution in nonatomic games. In: STOC (fourthcoming, 2006)Google Scholar
  15. 15.
    Johari, R., Tsitsiklis, J.N.: Network resource allocation and a congestion game. Mathematics of Operations Research 29, 407–435 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: STACS, pp. 404–413 (1999)Google Scholar
  17. 17.
    Orda, A., Rom, R., Shimkin, N.: Competitive routing in multiuser communication networks. IEEE/ACM Transactions on Networking 1, 510–521 (1993)CrossRefGoogle Scholar
  18. 18.
    Papadimitriou, C.H.: Algorithms, games, and the Internet. In: STOC, pp. 749–753 (2001)Google Scholar
  19. 19.
    Perakis, G.: The price of anarchy under nonlinear and asymmetric costs. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 46–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Pigou, A.C.: The Economics of Welfare. Macmillan, London (1920)Google Scholar
  21. 21.
    Potra, F., Ye, Y.: A quadratically convergent polynomial algorithm for solving entropy optimization problems. SIAM Journal on Optimization 3, 843–860 (1993)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rosen, J.B.: Existence and uniqueness of equilibrium points for concave N-person games. Econometrica 33, 520–534 (1965)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Roughgarden, T.: The price of anarchy is independent of the network topology. Journal of Computer and System Sciences 67, 341–364 (2003)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Roughgarden, T.: Selfish routing with atomic players. In: SODA, pp. 973–974 (2005)Google Scholar
  25. 25.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the ACM 49, 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Roughgarden, T., Tardos, É.: Bounding the inefficiency of equilibria in nonatomic congestion games. Games and Economic Behavior 47, 389–403 (2004)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Schulz, A.S., Stier-Moses, N.E.: On the performance of user equilibria in traffic networks. In: SODA, pp. 86–87 (2003)Google Scholar
  28. 28.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings of the Institution of Civil Engineers, Part II, Vol. 1, pp. 325–378 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roberto Cominetti
    • 1
  • José R. Correa
    • 2
  • Nicolás E. Stier-Moses
    • 3
  1. 1.Departamento de Ingeniería MatemáticaUniversidad de ChileSantiagoChile
  2. 2.School of BusinessUniversidad Adolfo IbáñezSantiagoChile
  3. 3.Graduate School of BusinessColumbia UniversityNew YorkUSA

Personalised recommendations