Embedding Bounded Bandwidth Graphs into ℓ1

  • Douglas E. Carroll
  • Ashish Goel
  • Adam Meyerson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)


We introduce the first embedding of graphs of low bandwidth into ℓ1, with distortion depending only upon the bandwidth. We extend this result to a new graph parameter called tree-bandwidth, which is very similar to (but more restrictive than) treewidth. This represents the first constant distortion embedding of a non-planar class of graphs into ℓ1. Our results make use of a new technique that we call iterative embedding in which we define coordinates for a small number of points at a time.


Planar Graph Outerplanar Graph Expander Graph Annual IEEE Symposium Graph Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Raecke, H., Ravi, R., Sidiropoulos, A.: Approximation Algorithms for Low-Distortion Embeddings Into Low-Dimensional Spaces. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 119–128 (2005)Google Scholar
  2. 2.
    Bodlaender, H.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.: A Note On Domino Treewidth. Discrete Mathematics and Theoretical Computer Science 3, 144–150 (1999)MathSciNetGoogle Scholar
  4. 4.
    Bourgain, J.: On Lipschitz Embeddings of Finite Metric Spaces in Hilbert Space. Israel Journal of Mathematics 52, 46–52 (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bourgain, J.: The Metrical Interpretation of Superreflexivity in Banach Spaces. Israel Journal of Mathematics 56, 222–230 (1986)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chekuri, C., Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Embedding k-Outerplanar Graphs into ℓ1. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 527–536 (2003)Google Scholar
  7. 7.
    Chung, F., Seymour, P.: Graphs with Small Bandwidth and Cutwidth. Discrete Mathematics 75, 113–119 (1989)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Feige, U.: Approximating the bandwidth via volume respecting embeddings. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 90-99 (1998)Google Scholar
  9. 9.
    Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and ℓ -embeddings. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 399-408 (1999)Google Scholar
  10. 10.
    Indyk, P.: Algorithmic Aspects of Geometric Embeddings. In: Proceedings of the 42th Annual IEEE Symposium on Foundations of Computer Science, pp. 10-33 (2001)Google Scholar
  11. 11.
    Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–245 (1995)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nakhleh, L., Warnow, T., Linder, C.R., St, K.: John, Reconstructing reticulate evolution in species - theory and practice, Journal of Computational Biology (to appear)Google Scholar
  13. 13.
    Okamura, H., Seymour, P.: Multicommodity Flows in Planar Graphs. Journal of Combinatorial Theory Series B 31, 75–81 (1981)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rabinovich, Y.: On Average Distortion of Embedding Metrics into the Line and into ℓ. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 456-462 (2003)Google Scholar
  15. 15.
    Rao, S.: Small distortion and volume preserving embeddings for Planar and Euclidean metrics. In: Proceedings of the 15th Annual Symposium on Computational Geometry, pp. 300-306 (1999)Google Scholar
  16. 16.
    Robertson, N., Seymour, P.: Graph Minors II. Algorithmic Aspects of Tree-Width. Journal of Algorithms 7, 309–322 (1986)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Douglas E. Carroll
    • 1
  • Ashish Goel
    • 2
  • Adam Meyerson
    • 1
  1. 1.UCLA 
  2. 2.Stanford University 

Personalised recommendations