Suffix Trays and Suffix Trists: Structures for Faster Text Indexing

  • Richard Cole
  • Tsvi Kopelowitz
  • Moshe Lewenstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)


Suffix trees and suffix arrays are two of the most widely used data structures for text indexing. Each uses linear space and can be constructed in linear time [3,5,6,7]. However, when it comes to answering queries, the prior does so in O(mlog|Σ|) time, where m is the query size, |Σ| is the alphabet size, and the latter does so in O(m+logn), where n is the text size. We propose a novel way of combining the two into, what we call, a suffix tray. The space and construction time remain linear and the query time improves to O(m+log|Σ|).

We also consider the online version of indexing, where the indexing structure continues to update the text online and queries are answered in tandem. Here we suggest a suffix trist, a cross between a suffix tree and a suffix list. It supports queries in O(m+log|Σ|). The space and text update time of a suffix trist are the same as for the suffix tree or the suffix list.


Internal Node Indexing Structure Query Time Suffix Tree Binary Search Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, A., Kopelowitz, T., Lewenstein, M., Lewenstein, N.: Towards Real-Time Suffix Tree Construction. In: Proc. of Symp. on String Processing and Information Retrieval (SPIRE), pp. 67–78 (2005)Google Scholar
  2. 2.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  3. 3.
    Farach, M.: Optimal suffix tree construction with large alphabets. In: Proc. 38th IEEE Symposium on Foundations of Computer Science, pp. 137–143 (1997)Google Scholar
  4. 4.
    Grossi, R., Italiano, G.F.: Efficient techniques for maintaining multidimensional keys in linked data structures. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 372–381. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix arrays. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 186–199. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 200–210. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches. SIAM J. on Computing 22(5), 935–948 (1993)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    McCreight, E.M.: A space-economical suffix tree construction algorithm. J. of the ACM 23, 262–272 (1976)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th IEEE Symposium on Switching and Automata Theory, pp. 1–11 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Richard Cole
    • 1
  • Tsvi Kopelowitz
    • 2
  • Moshe Lewenstein
    • 2
  1. 1.New York University 
  2. 2.Bar-Ilan University 

Personalised recommendations