Advertisement

Stopping Times, Metrics and Approximate Counting

  • Magnus Bordewich
  • Martin Dyer
  • Marek Karpinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)

Abstract

In this paper we examine the importance of the choice of metric in path coupling, and its relationship to stopping time analysis. We give strong evidence that stopping time analysis is no more powerful than standard path coupling. In particular, we prove a stronger theorem for path coupling with stopping times, using a metric which allows us to analyse a one-step path coupling. This approach provides insight for the design of better metrics for specific problems. We give illustrative applications to hypergraph independent sets and SAT instances, hypergraph colourings and colourings of bipartite graphs, obtaining improved results for all these problems.

Keywords

Markov Chain Bipartite Graph Stopping Time Glauber Dynamic Proper Colouring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldous, D.: Random walks on finite groups and rapidly mixing Markov chains. In: Séminaire de Probabilités XVII, pp. 243–297. Springer, Heidelberg (1983)Google Scholar
  2. 2.
    Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT, Elec. Coll. on Comp. Compl., ECCC TR03-049 (2003)Google Scholar
  3. 3.
    Bordewich, M., Dyer, M., Karpinski, M.: Path coupling using stopping times. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 19–31. Springer, Heidelberg (2005) (A full version of the paper appears as http://arxiv.org/abs/math.PR/0501081)CrossRefGoogle Scholar
  4. 4.
    Bordewich, M., Dyer, M., Karpinski, M.: Metric construction, stopping times and path coupling (2005), http://arxiv.org/abs/math.PR/0511202
  5. 5.
    Bubley, R., Dyer, M.: Graph orientations with no sink and an approximation for a hard case of #SAT. In: Proc. 8th ACM-SIAM Symp. on Discrete Algorithms, pp. 248–257. SIAM, Philadelphia (1997)Google Scholar
  6. 6.
    Bubley, R., Dyer, M.: Path coupling: A technique for proving rapid mixing in Markov chains. In: Proc. 38th IEEE Symp. on Foundations of Computer Science, pp. 223–231. IEEE, Los Alamitos (1997)Google Scholar
  7. 7.
    Bubley, R., Dyer, M.: Faster random generation of linear extensions. In: Proc. 9th ACM-SIAM Symp. on Discrete Algorithms, pp. 350–354. ACM-SIAM (1998)Google Scholar
  8. 8.
    Doeblin, W.: Exposé de la théorie des chaînes simples constantes de Markoff à un nombre fini d’états. Revue Mathématique de l’Union Interbalkanique 2, 77–105 (1938)Google Scholar
  9. 9.
    Dyer, M., Frieze, A.: Randomly colouring graphs with lower bounds on girth and maximum degree. Random Structures and Algorithms 23, 167–179 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dyer, M., Frieze, A., Hayes, T., Vigoda, E.: Randomly coloring constant degree graphs. In: Proc. 45th IEEE Symp. on Foundations of Computer Science, pp. 582–589. IEEE, Los Alamitos (2004)CrossRefGoogle Scholar
  11. 11.
    Dyer, M., Goldberg, L., Greenhill, C., Jerrum, M., Mitzenmacher, M.: An extension of path coupling and its application to the Glauber dynamics for graph colorings. SIAM Journal on Computing 30, 1962–1975 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dyer, M., Greenhill, C.: Random walks on combinatorial objects. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics. London Math. Soc. Lecture Note Series, vol. 267, pp. 101–136. Cambridge University Press, Cambridge (1999)Google Scholar
  13. 13.
    Dyer, M., Greenhill, C.: On Markov chains for independent sets. Journal of Algorithms 35, 17–49 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hayes, T., Vigoda, E.: Variable length path coupling. In: Proc. 15th ACM-SIAM Symp. on Discrete Algorithms, pp. 103–110. ACM-SIAM (2004)Google Scholar
  15. 15.
    Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of a low-degree graph. Random Structure & Algorithms 7, 157–165 (1995)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jerrum, M.: Counting, sampling and integrating: algorithms and complexity, ETH Zürich Lectures in Mathematics, Birkhäuser, Basel (2003)Google Scholar
  17. 17.
    Luby, M., Vigoda, E.: Fast convergence of the Glauber dynamics for sampling independent sets. Random Structures & Algorithms 15, 229–241 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mitzenmacher, M., Niklova, E.: Path coupling as a branching process (2002)Google Scholar
  19. 19.
    Salas, J., Sokal, A.: Absence of phase transition for anti-ferromagnetic Potts models via the Dobrushin uniqueness theorem. J. Stat. Phys. 86, 551–579 (1997)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Vigoda, E.: Improved bounds for sampling colorings. J. Math. Phys. 41, 1555–1569 (1999)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Magnus Bordewich
    • 1
  • Martin Dyer
    • 2
  • Marek Karpinski
    • 3
  1. 1.Durham UniversityDurhamUK
  2. 2.Leeds UniversityLeedsUK
  3. 3.University of BonnBonnGermany

Personalised recommendations