A Logical Architecture of a Normative System

  • Guido Boella
  • Leendert van der Torre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4048)


Logical architectures combine several logics into a more complex logical system. In this paper we study a logical architecture using input/output operations corresponding to the functionality of logical components. We illustrate how the architectural approach can be used to develop a logic of a normative system based on logics of counts-as conditionals, institutional constraints, obligations and permissions. In this example we adapt for counts-as conditionals and institutional constraints a proposal of Jones and Sergot, and for obligations and permissions we adapt the input/output logic framework of Makinson and van der Torre. We use our architecture to study logical relations among counts-as conditionals, institutional constraints, obligations and permissions. We show that in our logical architecture the combined system of counts-as conditionals and institutional constraints reduces to the logic of institutional constraints, which again reduces to an expression in the underlying base logic. Counts-as conditionals and institutional constraints are defined as a pre-processing step for the regulative norms. Permissions are defined as exceptions to obligations and their interaction is characterized.


Operational Semantic Normative System Enterprise Architecture Deontic Logic Institutional Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alchourrón, C., Bulygin: Normative systems. Springer, Heidelberg (1972)Google Scholar
  2. 2.
    Anderson, J.R.: Rules of the mind. Lawrence Ellbaum Associates, Mahwah (1993)Google Scholar
  3. 3.
    Artosi, A., Rotolo, A., Vida, S.: On the logical nature of count-as conditionals. In: Procs. of LEA 2004 Workshop (2004)Google Scholar
  4. 4.
    Bochman, A.: Explanatory Nonmonotonic reasoning. World Scientific, Singapore (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Boella, G., Hulstijn, J., van der Torre, L.: Interaction in normative multi-agent systems. Electronic Notes in Theoretical Computer Science 141(5), 135–162 (2005)CrossRefGoogle Scholar
  6. 6.
    Boella, G., van der Torre, L.: Regulative and constitutive norms in normative multiagent systems. In: Proceedings of the Ninth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2004), pp. 255–265 (2004)Google Scholar
  7. 7.
    Boella, G., van der Torre, L.: An architecture of a normative system (short paper). In: Proceedings of AAMAS 2006 (2006)Google Scholar
  8. 8.
    Boella, G., van der Torre, L.: A game theoretic approach to contracts in multiagent systems. IEEE Trans. SMC, Part C 36(1), 68–79 (2006)CrossRefGoogle Scholar
  9. 9.
    Boutilier, C.: Toward a logic for qualitative decision theory. In: Proceedings of KR 1994, pp. 75–86 (1994)Google Scholar
  10. 10.
    Bulygin, E.: Permissive norms and normative systems. In: Automated Analysis of Legal Texts, pp. 211–218. Publishing Company, Amsterdam (1986)Google Scholar
  11. 11.
    Gelati, J., Governatori, G., Rotolo, N., Sartor, G.: Declarative power, representation, and mandate. A formal analysis. In: Procs. of JURIX 2002. IOS Press, Amsterdam (2002)Google Scholar
  12. 12.
    Hansson, B.: An analysis of some deontic logics. Nôus 3, 373–398 (1969)MathSciNetGoogle Scholar
  13. 13.
    Ingrand, F.F., Georgeff, M.P., Rao, A.S.: An architecture for real-time reasoning and system control. IEEE Expert 7(6) (1992)Google Scholar
  14. 14.
    Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Journal of IGPL 3, 427–443 (1996)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: an architecture for general intelligence. Artificial Intelligence 33, 1–64 (1987)CrossRefGoogle Scholar
  16. 16.
    Lankhorst, M., et al.: Enterprise Architecture At Work. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Makinson, D., van der Torre, L.: Input-output logics. Journal of Philosophical Logic 29, 383–408 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Makinson, D., van der Torre, L.: Constraints for input-output logics. Journal of Philosophical Logic 30, 155–185 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Makinson, D., van der Torre, L.: Permissions from an input/output perspective. Journal of Philosophical Logic 32(4), 391–416 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Makinson, D., van der Torre, L.: What is input/output logic? In: Foundations of the Formal Sciences II: Applications of Mathematical Logic in Philosophy and Linguistics, Trends in Logic, vol. 17. Kluwer, Dordrecht (2003)Google Scholar
  21. 21.
    Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press, Cambridge (1969)Google Scholar
  22. 22.
    von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guido Boella
    • 1
  • Leendert van der Torre
    • 2
  1. 1.Dipartimento di InformaticaUniversità di TorinoItaly
  2. 2.University of Luxembourg 

Personalised recommendations