Skip to main content

Permissions and Uncontrollable Propositions in DSDL3: Non-monotonicity and Algorithms

  • Conference paper
  • 351 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4048)

Abstract

In this paper we are interested in non-monotonic extensions of Bengt Hansson’s standard dyadic deontic logic 3, known as DSDL3. We study specificity principles for DSDL3 with both controllable and uncontrollable propositions. We introduce an algorithm for minimal specificity which not only covers obligations but also permissions, and we discuss the distinction between weak and strong permissions. Moreover, we introduce ways to combine algorithms for minimal and maximal specificity for DSDL3 with controllable and uncontrollable propositions, based on ‘optimistic’ and ‘pessimistic’ reasoning respectively.

Keywords

  • Deontic Logic
  • Nonmonotonic Reasoning
  • Nonmonotonic Logic
  • Preference Logic
  • Conditional Knowledge Base

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11786849_14
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-35843-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic semantics of conditional knowledge bases. Logic and Computation 9(6), 873–895 (1999)

    MATH  CrossRef  MathSciNet  Google Scholar 

  2. Benferhat, S., Dubois, D., Prade, H.: Towards a possibilistic logic handling of preferences. Applied Intelligence 14(3), 303–317 (2001)

    MATH  CrossRef  Google Scholar 

  3. Booth, R., Paris, J.B.: A note on the rational closure of knowledge bases with both positive and negative knowledge. Journal of Logic, Language and Information 7(2) (1998)

    Google Scholar 

  4. Boutilier, C.: Conditional logics of normality: a modal approach. Artificial Intelligence 68, 87–154 (1994)

    MATH  CrossRef  MathSciNet  Google Scholar 

  5. Boutilier, C.: Toward a logic for qualitative decision theory. In: Proceedings of the 4th International Conference on Principles of Knowledge Representation (KR 1994), pp. 75–86 (1994)

    Google Scholar 

  6. Bulygin, E.: Permissive norms and normative systems. In: Martino, A., Natali, F.S. (eds.) Automated Analysis of Legal Texts, pp. 211–218. Publishing Company, Amsterdam (1986)

    Google Scholar 

  7. Cholvy, L., Garion, C.: Deriving individual obligations from collective obligations. In: Procs. of AAMAS 2003, pp. 962–963 (2003)

    Google Scholar 

  8. Cholvy, L., Garion, C.: Desires, norms and constraints. In: Procs. of AAMAS 2004, pp. 724–731 (2004)

    Google Scholar 

  9. Hansson, B.: An analysis of some deontic logics. Noûs 3, 373–398 (1969); Reprinted in Hilpinen, pp. 121–147 (1971)

    Google Scholar 

  10. Kaci, S., van der Torre, L.W.N.: Algorithms for a nonmonotonic logic of preferences. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 281–292. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  11. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1), 167–207 (1990)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Lang, J., Van Der Torre, L., Weydert, E.: Utilitarian desires. Autonomous Agents and Multi-Agent Systems 5, 329–363 (2002)

    CrossRef  Google Scholar 

  13. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55(1), 1–60 (1992)

    MATH  CrossRef  MathSciNet  Google Scholar 

  14. Lewis, D.: Counterfactuals. Blackwell, Malden (1973)

    Google Scholar 

  15. Pearl, J.: System Z: A natural ordering of defaults with tractable applications to default reasoning. In: Parikh, R. (ed.) Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge (TARK 1990), pp. 121–135. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  16. Prakken, H., Sergot, M.J.: Dyadic deontic logic and contrary-to-duty obligations. In: Nute, D. (ed.) Defeasible Deontic Logic. Synthese Library, vol. 263, pp. 223–262. Kluwer, Dordrecht (1997)

    Google Scholar 

  17. Shoham, Y.: Nonmonotonic logics: Meaning and utility. In: Procs. of IJCAI 1987, pp. 388–393 (1987)

    Google Scholar 

  18. Spohn, W.: An analysis of Hansson’s dyadic deontic logic. Journal of Philosophical Logic 4, 237–252 (1975)

    MATH  CrossRef  MathSciNet  Google Scholar 

  19. van der Hoek, W., Wooldridge, M.: On the logic of cooperation and propositional control. Artif. Intell. 164(1-2), 81–119 (2005)

    MATH  CrossRef  Google Scholar 

  20. van der Torre, L., Tan, Y.: Contrary-to-duty reasoning with preference-based dyadic obligations. Annals of Mathematics and Artificial Intelligence 27, 49–78 (1999)

    MATH  CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaci, S., van der Torre, L. (2006). Permissions and Uncontrollable Propositions in DSDL3: Non-monotonicity and Algorithms. In: Goble, L., Meyer, JJ.C. (eds) Deontic Logic and Artificial Normative Systems. DEON 2006. Lecture Notes in Computer Science(), vol 4048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786849_14

Download citation

  • DOI: https://doi.org/10.1007/11786849_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35842-8

  • Online ISBN: 978-3-540-35843-5

  • eBook Packages: Computer ScienceComputer Science (R0)