Permissions and Uncontrollable Propositions in DSDL3: Non-monotonicity and Algorithms

  • Souhila Kaci
  • Leendert van der Torre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4048)


In this paper we are interested in non-monotonic extensions of Bengt Hansson’s standard dyadic deontic logic 3, known as DSDL3. We study specificity principles for DSDL3 with both controllable and uncontrollable propositions. We introduce an algorithm for minimal specificity which not only covers obligations but also permissions, and we discuss the distinction between weak and strong permissions. Moreover, we introduce ways to combine algorithms for minimal and maximal specificity for DSDL3 with controllable and uncontrollable propositions, based on ‘optimistic’ and ‘pessimistic’ reasoning respectively.


Deontic Logic Nonmonotonic Reasoning Nonmonotonic Logic Preference Logic Conditional Knowledge Base 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic semantics of conditional knowledge bases. Logic and Computation 9(6), 873–895 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benferhat, S., Dubois, D., Prade, H.: Towards a possibilistic logic handling of preferences. Applied Intelligence 14(3), 303–317 (2001)MATHCrossRefGoogle Scholar
  3. 3.
    Booth, R., Paris, J.B.: A note on the rational closure of knowledge bases with both positive and negative knowledge. Journal of Logic, Language and Information 7(2) (1998)Google Scholar
  4. 4.
    Boutilier, C.: Conditional logics of normality: a modal approach. Artificial Intelligence 68, 87–154 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boutilier, C.: Toward a logic for qualitative decision theory. In: Proceedings of the 4th International Conference on Principles of Knowledge Representation (KR 1994), pp. 75–86 (1994)Google Scholar
  6. 6.
    Bulygin, E.: Permissive norms and normative systems. In: Martino, A., Natali, F.S. (eds.) Automated Analysis of Legal Texts, pp. 211–218. Publishing Company, Amsterdam (1986)Google Scholar
  7. 7.
    Cholvy, L., Garion, C.: Deriving individual obligations from collective obligations. In: Procs. of AAMAS 2003, pp. 962–963 (2003)Google Scholar
  8. 8.
    Cholvy, L., Garion, C.: Desires, norms and constraints. In: Procs. of AAMAS 2004, pp. 724–731 (2004)Google Scholar
  9. 9.
    Hansson, B.: An analysis of some deontic logics. Noûs 3, 373–398 (1969); Reprinted in Hilpinen, pp. 121–147 (1971)Google Scholar
  10. 10.
    Kaci, S., van der Torre, L.W.N.: Algorithms for a nonmonotonic logic of preferences. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 281–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1), 167–207 (1990)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lang, J., Van Der Torre, L., Weydert, E.: Utilitarian desires. Autonomous Agents and Multi-Agent Systems 5, 329–363 (2002)CrossRefGoogle Scholar
  13. 13.
    Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55(1), 1–60 (1992)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lewis, D.: Counterfactuals. Blackwell, Malden (1973)Google Scholar
  15. 15.
    Pearl, J.: System Z: A natural ordering of defaults with tractable applications to default reasoning. In: Parikh, R. (ed.) Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge (TARK 1990), pp. 121–135. Morgan Kaufmann, San Francisco (1990)Google Scholar
  16. 16.
    Prakken, H., Sergot, M.J.: Dyadic deontic logic and contrary-to-duty obligations. In: Nute, D. (ed.) Defeasible Deontic Logic. Synthese Library, vol. 263, pp. 223–262. Kluwer, Dordrecht (1997)Google Scholar
  17. 17.
    Shoham, Y.: Nonmonotonic logics: Meaning and utility. In: Procs. of IJCAI 1987, pp. 388–393 (1987)Google Scholar
  18. 18.
    Spohn, W.: An analysis of Hansson’s dyadic deontic logic. Journal of Philosophical Logic 4, 237–252 (1975)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    van der Hoek, W., Wooldridge, M.: On the logic of cooperation and propositional control. Artif. Intell. 164(1-2), 81–119 (2005)MATHCrossRefGoogle Scholar
  20. 20.
    van der Torre, L., Tan, Y.: Contrary-to-duty reasoning with preference-based dyadic obligations. Annals of Mathematics and Artificial Intelligence 27, 49–78 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Souhila Kaci
    • 1
  • Leendert van der Torre
    • 2
  1. 1.Centre de Recherche en Informatique de Lens (C.R.I.L.)–C.N.R.SFrance
  2. 2.University of Luxembourg 

Personalised recommendations