Abstract
Motivated by the frequency assignment problem in heterogeneous multihop radio networks, where different radio stations may have different transmission ranges, we introduce two new types of coloring of graphs, which generalize the well-known Distance-k-Coloring. Let G=(V,E) be a graph modeling a radio network, and assume that each vertex v of G has its own transmission radius r(v), a non-negative integer. We define r-coloring (r + -coloring) of G as an assignment Φ: V↦{0,1,2,...} of colors to vertices such that Φ(u)=Φ(v) implies d G (u,v)>r(v)+r(u) (d G (u,v)>r(v)+r(u)+1, respectively). The r-Coloring problem (the r + -Coloring problem) asks for a given graph G and a radius-function r: V↦N∪{0}, to find an r-coloring (an r + -coloring, respectively) of G with minimum number of colors. Using a new notion of generalized powers of graphs, we investigate the complexity of the r-Coloring and r + -Coloring problems on several families of graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agnarsson, G., Greenlaw, R., Halldorsson, M.M.: On powers of chordal graphs and their colorings. Congressus Numerantium 144, 41–65 (2000)
Agnarsson, G., Halldorsson, M.M.: Coloring powers of planar graphs. SIAM J. Disc. Math. 16, 651–662 (2003)
Bandelt, H.J., Henkmann, A., Nicolai, F.: Powers of distance-hereditary graphs. Discrete Math. 145, 37–60 (1995)
Bertossi, A.A., Pinotti, M.C., Tan, R.B.: Channel Assignment with Separation for Interference Avoidance in Wireless Networks. IEEE Trans. Parallel Distrib. Syst. 14, 222–235 (2003)
Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: λ-Coloring of Graphs. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 395–406. Springer, Heidelberg (2000)
Brandstädt, A., Chepoi, V., Dragan, F.: The algorithmic use of hypertree structure and maximum neighborhood orderings. Disc. Appl. Math. 82, 43–77 (1998)
Brandstädt, A., Dragan, F.F., Chepoi, V., Voloshin, V.I.: Dually Chordal Graphs. SIAM J. Discrete Math. 11, 437–455 (1998)
Brandstädt, A., Dragan, F.F., Nicolai, F.: Homogeneously orderable graphs. Theoretical Computer Science 172, 209–232 (1997)
Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Math. Appl. SIAM, Philadelphia (1999)
Calamoneri, T., Petreschi, R.: On the Radiocoloring Problem. In: Das, S.K., Bhattacharya, S. (eds.) IWDC 2002. LNCS, vol. 2571, pp. 118–127. Springer, Heidelberg (2002)
Chang, G.J., Kuo, D.: The L(2,1)-labeling problem on graphs. SIAM J. Disc. Math. 9, 309–316 (1996)
Chang, J.M., Ho, C.W., Ko, M.T.: Powers of Asteroidal Triple-free Graphs with Applications. Ars Combinatoria 67, 161–173 (2003)
Chang, J.M., Ho, C.W., Ko, M.T.: LexBFS-ordering in Asteroidal Triple-Free Graphs. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 163–172. Springer, Heidelberg (1999)
Chen, M., Chang, G.J.: Families of Graphs Closed Under Taking Powers. Graphs and Combinatorics 17, 207–212 (2001)
Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Comb. 24B, 23–30 (1987)
Damaschke, P.: Distances in cocomparability graphs and their powers. Discrete Applied Mathematics 35, 67–72 (1992)
Dragan, F.F.: Estimating All Pairs Shortest Paths in Restricted Graph Families: A Unified Approach. Journal of Algorithms 57, 1–21 (2005)
Duchet, P.: Classical perfect graphs. Ann. Discrete Math. 21, 67–96 (1984)
Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of λ-labelings. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 350–363. Springer, Heidelberg (1999)
Flotow, C.: On Powers of Circular Arc Graphs and Proper Circular Arc Graphs. Discrete Applied Mathematics 69, 199–207 (1996)
Fotakis, D., Nikoletseas, S.E., Papadopoulou, V.G., Spirakis, P.G.: NP-Completeness Results and Efficient Approximations for Radiocoloring in Planar Graphs. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 363–372. Springer, Heidelberg (2000)
Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Alg. Disc. Meth. 1, 216–227 (1980)
Gavril, F.: Algorithms for min. coloring, max. clique, min. covering by cliques and max. independent set of a chordal graph. SIAM J. Comput. 1, 180–187 (1972)
Griggs, J.R., Yeh, R.K.: Labeling graphs with a condition at distance 2. SIAM J. Discrete Math. 5, 586–595 (1992)
Grötschel, M., Lovasz, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In: Topics on perfect graphs, vol. 88, pp. 325–356
Hayward, R., Spinrad, J., Sritharan, R.: Weakly chordal graph algorithms via handles. In: SODA 2000, pp. 42–49 (2000)
Karapetian, I.A.: On Coloring of Arc Graphs. Akademiia nauk Armianskoi SSR Doklady 70, 306–311 (1980)
Král’, D.: Coloring Powers of Chordal Graphs. SIAM Journal on Discrete Mathematics 18, 451–461 (2004)
Laskar, R., Shier, D.: Powers and centers of chordal graphs. Discrete Appl. Math. 6, 139–147 (1983)
Möhring, R.H.: Algorithmic aspects of comparability graphs and interval graphs. In: Rival, I. (ed.) Graphs and Order, pp. 41–102 (1985)
Ramanathan, S., Lloyd, E.L.: Scheduling Algorithms for Multihop Radio Networks. IEEE/ACM Transactions on Networking 1, 166–172 (1993)
Raychaudhuri, A.: On powers of strongly chordal and circular arc graphs. Ars Combin. 34, 147–160 (1992)
Todinca, I.: Coloring Powers of Graphs of Bounded Clique-Width. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 370–382. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brandstädt, A., Dragan, F.F., Xiang, Y., Yan, C. (2006). Generalized Powers of Graphs and Their Algorithmic Use. In: Arge, L., Freivalds, R. (eds) Algorithm Theory – SWAT 2006. SWAT 2006. Lecture Notes in Computer Science, vol 4059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785293_39
Download citation
DOI: https://doi.org/10.1007/11785293_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35753-7
Online ISBN: 978-3-540-35755-1
eBook Packages: Computer ScienceComputer Science (R0)