Skip to main content

Generalized Powers of Graphs and Their Algorithmic Use

  • Conference paper
Algorithm Theory – SWAT 2006 (SWAT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4059))

Included in the following conference series:

Abstract

Motivated by the frequency assignment problem in heterogeneous multihop radio networks, where different radio stations may have different transmission ranges, we introduce two new types of coloring of graphs, which generalize the well-known Distance-k-Coloring. Let G=(V,E) be a graph modeling a radio network, and assume that each vertex v of G has its own transmission radius r(v), a non-negative integer. We define r-coloring (r  +  -coloring) of G as an assignment Φ: V↦{0,1,2,...} of colors to vertices such that Φ(u)=Φ(v) implies d G (u,v)>r(v)+r(u) (d G (u,v)>r(v)+r(u)+1, respectively). The r-Coloring problem (the r  +  -Coloring problem) asks for a given graph G and a radius-function r: VN∪{0}, to find an r-coloring (an r  + -coloring, respectively) of G with minimum number of colors. Using a new notion of generalized powers of graphs, we investigate the complexity of the r-Coloring and r  + -Coloring problems on several families of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agnarsson, G., Greenlaw, R., Halldorsson, M.M.: On powers of chordal graphs and their colorings. Congressus Numerantium 144, 41–65 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Agnarsson, G., Halldorsson, M.M.: Coloring powers of planar graphs. SIAM J. Disc. Math. 16, 651–662 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bandelt, H.J., Henkmann, A., Nicolai, F.: Powers of distance-hereditary graphs. Discrete Math. 145, 37–60 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertossi, A.A., Pinotti, M.C., Tan, R.B.: Channel Assignment with Separation for Interference Avoidance in Wireless Networks. IEEE Trans. Parallel Distrib. Syst. 14, 222–235 (2003)

    Article  Google Scholar 

  5. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: λ-Coloring of Graphs. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 395–406. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Brandstädt, A., Chepoi, V., Dragan, F.: The algorithmic use of hypertree structure and maximum neighborhood orderings. Disc. Appl. Math. 82, 43–77 (1998)

    Article  MATH  Google Scholar 

  7. Brandstädt, A., Dragan, F.F., Chepoi, V., Voloshin, V.I.: Dually Chordal Graphs. SIAM J. Discrete Math. 11, 437–455 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brandstädt, A., Dragan, F.F., Nicolai, F.: Homogeneously orderable graphs. Theoretical Computer Science 172, 209–232 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Math. Appl. SIAM, Philadelphia (1999)

    Google Scholar 

  10. Calamoneri, T., Petreschi, R.: On the Radiocoloring Problem. In: Das, S.K., Bhattacharya, S. (eds.) IWDC 2002. LNCS, vol. 2571, pp. 118–127. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Chang, G.J., Kuo, D.: The L(2,1)-labeling problem on graphs. SIAM J. Disc. Math. 9, 309–316 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chang, J.M., Ho, C.W., Ko, M.T.: Powers of Asteroidal Triple-free Graphs with Applications. Ars Combinatoria 67, 161–173 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Chang, J.M., Ho, C.W., Ko, M.T.: LexBFS-ordering in Asteroidal Triple-Free Graphs. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 163–172. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Chen, M., Chang, G.J.: Families of Graphs Closed Under Taking Powers. Graphs and Combinatorics 17, 207–212 (2001)

    Article  MathSciNet  Google Scholar 

  15. Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Comb. 24B, 23–30 (1987)

    MathSciNet  Google Scholar 

  16. Damaschke, P.: Distances in cocomparability graphs and their powers. Discrete Applied Mathematics 35, 67–72 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dragan, F.F.: Estimating All Pairs Shortest Paths in Restricted Graph Families: A Unified Approach. Journal of Algorithms 57, 1–21 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Duchet, P.: Classical perfect graphs. Ann. Discrete Math. 21, 67–96 (1984)

    MathSciNet  Google Scholar 

  19. Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of λ-labelings. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 350–363. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Flotow, C.: On Powers of Circular Arc Graphs and Proper Circular Arc Graphs. Discrete Applied Mathematics 69, 199–207 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fotakis, D., Nikoletseas, S.E., Papadopoulou, V.G., Spirakis, P.G.: NP-Completeness Results and Efficient Approximations for Radiocoloring in Planar Graphs. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 363–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Alg. Disc. Meth. 1, 216–227 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gavril, F.: Algorithms for min. coloring, max. clique, min. covering by cliques and max. independent set of a chordal graph. SIAM J. Comput. 1, 180–187 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  24. Griggs, J.R., Yeh, R.K.: Labeling graphs with a condition at distance 2. SIAM J. Discrete Math. 5, 586–595 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grötschel, M., Lovasz, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In: Topics on perfect graphs, vol. 88, pp. 325–356

    Google Scholar 

  26. Hayward, R., Spinrad, J., Sritharan, R.: Weakly chordal graph algorithms via handles. In: SODA 2000, pp. 42–49 (2000)

    Google Scholar 

  27. Karapetian, I.A.: On Coloring of Arc Graphs. Akademiia nauk Armianskoi SSR Doklady 70, 306–311 (1980)

    Google Scholar 

  28. Král’, D.: Coloring Powers of Chordal Graphs. SIAM Journal on Discrete Mathematics 18, 451–461 (2004)

    Article  MathSciNet  Google Scholar 

  29. Laskar, R., Shier, D.: Powers and centers of chordal graphs. Discrete Appl. Math. 6, 139–147 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Möhring, R.H.: Algorithmic aspects of comparability graphs and interval graphs. In: Rival, I. (ed.) Graphs and Order, pp. 41–102 (1985)

    Google Scholar 

  31. Ramanathan, S., Lloyd, E.L.: Scheduling Algorithms for Multihop Radio Networks. IEEE/ACM Transactions on Networking 1, 166–172 (1993)

    Article  Google Scholar 

  32. Raychaudhuri, A.: On powers of strongly chordal and circular arc graphs. Ars Combin. 34, 147–160 (1992)

    MATH  MathSciNet  Google Scholar 

  33. Todinca, I.: Coloring Powers of Graphs of Bounded Clique-Width. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 370–382. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandstädt, A., Dragan, F.F., Xiang, Y., Yan, C. (2006). Generalized Powers of Graphs and Their Algorithmic Use. In: Arge, L., Freivalds, R. (eds) Algorithm Theory – SWAT 2006. SWAT 2006. Lecture Notes in Computer Science, vol 4059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785293_39

Download citation

  • DOI: https://doi.org/10.1007/11785293_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35753-7

  • Online ISBN: 978-3-540-35755-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics