Generalized Powers of Graphs and Their Algorithmic Use

  • Andreas Brandstädt
  • Feodor F. Dragan
  • Yang Xiang
  • Chenyu Yan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4059)


Motivated by the frequency assignment problem in heterogeneous multihop radio networks, where different radio stations may have different transmission ranges, we introduce two new types of coloring of graphs, which generalize the well-known Distance-k-Coloring. Let G=(V,E) be a graph modeling a radio network, and assume that each vertex v of G has its own transmission radius r(v), a non-negative integer. We define r-coloring (r  +  -coloring) of G as an assignment Φ: V↦{0,1,2,...} of colors to vertices such that Φ(u)=Φ(v) implies d G (u,v)>r(v)+r(u) (d G (u,v)>r(v)+r(u)+1, respectively). The r-Coloring problem (the r  +  -Coloring problem) asks for a given graph G and a radius-function r: VN∪{0}, to find an r-coloring (an r  + -coloring, respectively) of G with minimum number of colors. Using a new notion of generalized powers of graphs, we investigate the complexity of the r-Coloring and r  + -Coloring problems on several families of graphs.


Planar Graph Radio Station Interval Graph Chordal Graph Coloring Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnarsson, G., Greenlaw, R., Halldorsson, M.M.: On powers of chordal graphs and their colorings. Congressus Numerantium 144, 41–65 (2000)MATHMathSciNetGoogle Scholar
  2. 2.
    Agnarsson, G., Halldorsson, M.M.: Coloring powers of planar graphs. SIAM J. Disc. Math. 16, 651–662 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bandelt, H.J., Henkmann, A., Nicolai, F.: Powers of distance-hereditary graphs. Discrete Math. 145, 37–60 (1995)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertossi, A.A., Pinotti, M.C., Tan, R.B.: Channel Assignment with Separation for Interference Avoidance in Wireless Networks. IEEE Trans. Parallel Distrib. Syst. 14, 222–235 (2003)CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: λ-Coloring of Graphs. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 395–406. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Brandstädt, A., Chepoi, V., Dragan, F.: The algorithmic use of hypertree structure and maximum neighborhood orderings. Disc. Appl. Math. 82, 43–77 (1998)MATHCrossRefGoogle Scholar
  7. 7.
    Brandstädt, A., Dragan, F.F., Chepoi, V., Voloshin, V.I.: Dually Chordal Graphs. SIAM J. Discrete Math. 11, 437–455 (1998)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brandstädt, A., Dragan, F.F., Nicolai, F.: Homogeneously orderable graphs. Theoretical Computer Science 172, 209–232 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Math. Appl. SIAM, Philadelphia (1999)Google Scholar
  10. 10.
    Calamoneri, T., Petreschi, R.: On the Radiocoloring Problem. In: Das, S.K., Bhattacharya, S. (eds.) IWDC 2002. LNCS, vol. 2571, pp. 118–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Chang, G.J., Kuo, D.: The L(2,1)-labeling problem on graphs. SIAM J. Disc. Math. 9, 309–316 (1996)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chang, J.M., Ho, C.W., Ko, M.T.: Powers of Asteroidal Triple-free Graphs with Applications. Ars Combinatoria 67, 161–173 (2003)MATHMathSciNetGoogle Scholar
  13. 13.
    Chang, J.M., Ho, C.W., Ko, M.T.: LexBFS-ordering in Asteroidal Triple-Free Graphs. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 163–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Chen, M., Chang, G.J.: Families of Graphs Closed Under Taking Powers. Graphs and Combinatorics 17, 207–212 (2001)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Comb. 24B, 23–30 (1987)MathSciNetGoogle Scholar
  16. 16.
    Damaschke, P.: Distances in cocomparability graphs and their powers. Discrete Applied Mathematics 35, 67–72 (1992)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dragan, F.F.: Estimating All Pairs Shortest Paths in Restricted Graph Families: A Unified Approach. Journal of Algorithms 57, 1–21 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Duchet, P.: Classical perfect graphs. Ann. Discrete Math. 21, 67–96 (1984)MathSciNetGoogle Scholar
  19. 19.
    Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of λ-labelings. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 350–363. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Flotow, C.: On Powers of Circular Arc Graphs and Proper Circular Arc Graphs. Discrete Applied Mathematics 69, 199–207 (1996)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Fotakis, D., Nikoletseas, S.E., Papadopoulou, V.G., Spirakis, P.G.: NP-Completeness Results and Efficient Approximations for Radiocoloring in Planar Graphs. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 363–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Alg. Disc. Meth. 1, 216–227 (1980)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gavril, F.: Algorithms for min. coloring, max. clique, min. covering by cliques and max. independent set of a chordal graph. SIAM J. Comput. 1, 180–187 (1972)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Griggs, J.R., Yeh, R.K.: Labeling graphs with a condition at distance 2. SIAM J. Discrete Math. 5, 586–595 (1992)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Grötschel, M., Lovasz, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In: Topics on perfect graphs, vol. 88, pp. 325–356Google Scholar
  26. 26.
    Hayward, R., Spinrad, J., Sritharan, R.: Weakly chordal graph algorithms via handles. In: SODA 2000, pp. 42–49 (2000)Google Scholar
  27. 27.
    Karapetian, I.A.: On Coloring of Arc Graphs. Akademiia nauk Armianskoi SSR Doklady 70, 306–311 (1980)Google Scholar
  28. 28.
    Král’, D.: Coloring Powers of Chordal Graphs. SIAM Journal on Discrete Mathematics 18, 451–461 (2004)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Laskar, R., Shier, D.: Powers and centers of chordal graphs. Discrete Appl. Math. 6, 139–147 (1983)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Möhring, R.H.: Algorithmic aspects of comparability graphs and interval graphs. In: Rival, I. (ed.) Graphs and Order, pp. 41–102 (1985)Google Scholar
  31. 31.
    Ramanathan, S., Lloyd, E.L.: Scheduling Algorithms for Multihop Radio Networks. IEEE/ACM Transactions on Networking 1, 166–172 (1993)CrossRefGoogle Scholar
  32. 32.
    Raychaudhuri, A.: On powers of strongly chordal and circular arc graphs. Ars Combin. 34, 147–160 (1992)MATHMathSciNetGoogle Scholar
  33. 33.
    Todinca, I.: Coloring Powers of Graphs of Bounded Clique-Width. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 370–382. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andreas Brandstädt
    • 1
  • Feodor F. Dragan
    • 2
  • Yang Xiang
    • 2
  • Chenyu Yan
    • 2
  1. 1.FB InformatikUniversität RostockRostockGermany
  2. 2.Department of Computer ScienceKent State UniversityKentUSA

Personalised recommendations