Largest and Smallest Tours and Convex Hulls for Imprecise Points

Extended Abstract
  • Maarten Löffler
  • Marc van Kreveld
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4059)


Assume that a set of imprecise points is given, where each point is specified by a region in which the point may lie. We study the problem of computing the smallest and largest possible tours and convex hulls, measured by length, and in the latter case also by area. Generally we assume the imprecision region to be a square, but we discuss the case where it is a segment or circle as well. We give polynomial time algorithms for several variants of this problem, ranging in running time from O(n) to O(n 13), and prove NP-hardness for some geometric problems on imprecise points.


Line Segment Convex Hull Extreme Point Minimum Span Tree Tangent Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abellanas, M., Hurtado, F., Ramos, P.A.: Structural tolerance and Delaunay triangulation. Inf. Proc. Lett. 71, 221–227 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bandyopadhyay, D., Snoeyink, J.: Almost-Delaunay simplices: nearest neighbour relations for imprecise points. In: Proc. 15th ACM-SIAM Sympos. on Discr. Algorithms, pp. 410–419 (2004)Google Scholar
  3. 3.
    Bajaj, C.: The algebraic degree of geometric optimization problems. Discr. Comput. Geom. 3, 177–191 (1988)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boissonnat, J.-D., Lazard, S.: Convex hulls of bounded curvature. In: Proc. 8th Canad. Conf. on Comput. Geom., pp. 14–19 (1996)Google Scholar
  5. 5.
    Cai, L., Keil, J.M.: Computing visibility information in an inaccurate simple polygon. Internat. J. Comput. Geom. Appl. 7, 515–538 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    de Berg, M., Meijer, H., Overmars, M.H., Wilfong, G.T.: Computing the angularity tolerance. Int. J. Comput. Geometry Appl. 8, 467–482 (1998)MATHCrossRefGoogle Scholar
  7. 7.
    Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a Sequence of Polygons. In: Proc. 35th ACM Sympos. Theory Comput. (2003)Google Scholar
  8. 8.
    Edelsbrunner, H.: Finding transversals for sets of simple geometric figures. Theor. Comp. Science 35, 55–69 (1985)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fiala, J., Kratochvil, J., Proskurowski, A.: Systems of distant representatives. Discrete Applied Mathematics 145, 306–316 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Goodrich, M.T., Snoeyink, J.: Stabbing parallel segments with a convex polygon. Computer Vision, Graphics, and Image Processing 49, 152–170 (1990)MATHCrossRefGoogle Scholar
  11. 11.
    Guibas, L., Salesin, D., Stolfi, J.: Constructing strongly convex approximate hulls with inaccurate primitives. Algorithmica 9, 534–560 (1993)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Khanban, A.A., Edalat, A.: Computing Delaunay triangulation with imprecise input data. In: Proc. 15th Canad. Conf. on Comput. Geom., pp. 94–97 (2003)Google Scholar
  13. 13.
    Löffler, M., van Kreveld, M.: Largest and Smallest Convex Hulls for Imprecise Points, Technical Report UU-CS-2006-019, Department of Computing and Information Science, Utrecht University (2006)Google Scholar
  14. 14.
    Löffler, M., van Kreveld, M.: Largest and Smallest Tours for Imprecise Points (manuscript, 2006)Google Scholar
  15. 15.
    Nagai, T., Tokura, N.: Tight error bounds of geometric problems on convex objects with imprecise coordinates. In: Jap. Conf. on Discrete and Comput. Geom., pp. 252–263 (2000)Google Scholar
  16. 16.
    Ostrovsky-Berman, Y., Joskowicz, L.: Uncertainty Envelopes. In: Abstracts 21st European Workshop on Comput., pp. 175–178 (2005)Google Scholar
  17. 17.
    Polishchuk, V., Mitchell, J.S.B.: Touring Convex Bodies - A Conic Programming Solution. In: Proc. 17th Canad. Conf. on Comput. Geom., pp. 290–293 (2005)Google Scholar
  18. 18.
    Sellen, J., Choi, J., Yap, C.-K.: Precision-sensitive Euclidean shortest paths in 3-space. SIAM J. Comput. 29, 1577–1595 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Yap, C.-K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 41, pp. 927–952. Chapman and Hall, Boca Raton (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maarten Löffler
    • 1
  • Marc van Kreveld
    • 1
  1. 1.Institute of Information and Computing SciencesUtrecht UniversityThe Netherlands

Personalised recommendations