In-Place Algorithms for Computing (Layers of) Maxima

  • Henrik Blunck
  • Jan Vahrenhold
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4059)


We describe space-efficient algorithms for solving problems related to finding maxima among points in two and three dimensions. Our algorithms run in optimal \(\mathcal{O}({n\log n})\) time and occupy only constant extra space in addition to the space needed for representing the input.


Computational Geometry Skyline Query Extra Space Topmost Layer Information Processing Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentley, J.L.: Multidimensional divide-and-conquer. Communications of the ACM 23(4), 214–229 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bentley, J.L., Clarkson, K.L., Levine, D.B.: Fast linear expected-time algorithms for computing maxima and convex hulls. Algorithmica 9(2), 168–183 (1993)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, pp. 421–430 (2001)Google Scholar
  4. 4.
    Bose, P., Maheshwari, A., Morin, P., Morrison, J., Smid, M., Vahrenhold, J.: Space-efficient geometric divide-and-conquer algorithms. Computational Geometry: Theory & Applications (to appear, 2006) (accepted, November 2004)Google Scholar
  5. 5.
    Brönnimann, H., Chan, T.M.-Y.: Space-efficient algorithms for computing the convex hull of a simple polygonal line in linear time. Computational Geometry: Theory & Applications 34(2), 75–82 (2006)MATHGoogle Scholar
  6. 6.
    Brönnimann, H., Chan, T.M.-Y., Chen, E.Y.: Towards in-place geometric algorithms. In: Proceedings of the 20th Annual Symposium on Computational Geometry, pp. 239–246 (2004)Google Scholar
  7. 7.
    Brönnimann, H., Iacono, J., Katajainen, J., Morin, P., Morrison, J., Toussaint, G.T.: Space-efficient planar convex hull algorithms. Theoretical Computer Science 321(1), 25–40 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Buchsbaum, A.L., Goodrich, M.T.: Three-dimensional layers of maxima. Algorithmica 39(4), 275–286 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chen, E.Y., Chan, T.M.-Y.: A space-efficient algorithm for line segment intersection. In: Proceedings of the 15th Canadian Conference on Computational Geometry, pp. 68–71 (2003)Google Scholar
  10. 10.
    Dai, H.K., Zhang, X.W.: Improved linear expected-time algorithms for computing maxima. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 181–192. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Floyd, R.W.: Algorithm 245: Treesort. Communications of the ACM 7(12), 701 (1964)CrossRefGoogle Scholar
  12. 12.
    Geffert, V., Katajainen, J., Pasanen, T.: Asymptotically efficient in-place merging. Theoretical Computer Science 237(1–2), 159–181 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kapoor, S.: Dynamic maintenance of maxima of 2-D point sets. SIAM Journal on Computing 29(6), 1858–1877 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Katajainen, J., Pasanen, T.: Stable minimum space partitioning in linear time. BIT 32, 580–585 (1992)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for skyline queries. In: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 275–286 (2002)Google Scholar
  16. 16.
    Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. Journal of the ACM 22(4), 469–476 (1975)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Matoušek, J.: Computing dominances in E n. Information Processing Letters 38(5), 277–278 (1991)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Munro, J.I.: An implicit data structure supporting insertion, deletion, and search in O(log2 n) time. Journal of Computer and System Sciences 33(1), 66–74 (1986)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Transactions on Database Systems 30(1), 41–82 (2005)CrossRefGoogle Scholar
  20. 20.
    Preparata, F.P., Shamos, M.I.: Computational Geometry. An Introduction. Springer, Heidelberg (1988)Google Scholar
  21. 21.
    Salowe, J.S., Steiger, W.L.: Stable unmerging in linear time and constant space. Information Processing Letters 25(3), 285–294 (1987)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In: Proceedings of the 27th International Conference on Very Large Data Bases, pp. 301–310 (2001)Google Scholar
  23. 23.
    Vahrenhold, J.: Line-segment intersection made in-place. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 146–157. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Henrik Blunck
    • 1
  • Jan Vahrenhold
    • 1
  1. 1.Institut für InformatikWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations