Improved Algorithms for Quantum Identification of Boolean Oracles

  • Andris Ambainis
  • Kazuo Iwama
  • Akinori Kawachi
  • Rudy Raymond
  • Shigeru Yamashita
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4059)


The oracle identification problem (OIP) was introduced by Ambainis et al. [3]. It is given as a set S of M oracles and a blackbox oracle f. Our task is to figure out which oracle in S is equal to the blackbox f by making queries to f. OIP includes several problems such as the Grover Search as special cases. In this paper, we improve the algorithms in [3] by providing a mostly optimal upper bound of query complexity for this problem: (i) For any oracle set S such that \(|S| \le 2^{N^d}\) (d < 1), we design an algorithm whose query complexity is \(O(\sqrt{N\log{M}/\log{N}})\), matching the lower bound proved in [3]. (ii) Our algorithm also works for the range between \(2^{N^d}\) and 2 N/logN (where the bound becomes O(N)), but the gap between the upper and lower bounds worsens gradually. (iii) Our algorithm is robust, namely, it exhibits the same performance (up to a constant factor) against the noisy oracles as also shown in the literatures [2, 11, 18] for special cases of OIP.


Success Probability Query Complexity Improve Algorithm Main Loop Quantum Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Proc. of STOC 2003, pp. 200–209 (2003)Google Scholar
  2. 2.
    Adcock, M., Cleve, R.: A quantum Goldreich-Levin theorem with cryptographic applications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 323–334. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Ambainis, A., Iwama, K., Kawachi, A., Masuda, H., Putra, R.H., Yamashita, S.: Quantum identification of boolean oracles. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 105–116. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Ambainis, A., Iwama, K., Kawachi, A., Putra, R.H., Yamashita, S.: Robust quantum algorithm for oracle identification. Preprint available at quant-ph/0411204Google Scholar
  5. 5.
    Atici, A., Servedio, R.A.: Improved bounds on quantum learning algorithms. Quantum Information Processing, 1–32 (January 2006)Google Scholar
  6. 6.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. In: IEEE Symposium on Foundations of Computer Science, pp. 352–361 (1998)Google Scholar
  7. 7.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Biron, D., Biham, O., Biham, E., Grassl, M., Lidar, D.A.: Generalized Grover search algorithm for arbitrary initial amplitude distribution. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 140–147. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4-5), 493–505 (1998)CrossRefGoogle Scholar
  10. 10.
    Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. AMS Contemporary Mathematics Series Millennium Volume entitled Quantum Computation & Information 305, 53–74 (2002)Google Scholar
  11. 11.
    Buhrman, H., Newman, I., Röhrig, H., de Wolf, R.: Robust quantum algorithms and polynomials. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 593–604. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. In: Proc. of STOC 2003, pp. 531–540 (2003)Google Scholar
  13. 13.
    Chi, D.P., Kim, J.: Quantum database searching by a single query. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 148–151. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Cohen, G.D., Honkala, I., Litsyn, S.N., Lobstein, A.: Covering codes. North-Holland, Amsterdam (1997)MATHGoogle Scholar
  15. 15.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: How many functions can be distinguished with k quantum queries? Phys. Rev. A 60(6), 4331–4333 (1999) (quant-ph/9901012)Google Scholar
  16. 16.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. In: Proc. of FOCS 1996, pp. 339–348 (1996)Google Scholar
  17. 17.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. of STOC 1996, pp. 212–218 (1996)Google Scholar
  18. 18.
    Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Hunziker, M., Meyer, D.A., Park, J., Pommersheim, J., Rothstein, M.: The geometry of quantum learning. Quantum Information Processing (to appear) arXiv:quant-ph/0309059Google Scholar
  20. 20.
    Krauthgamer, R., Sasson, O.: Property testing of data dimensionality. In: Proc. of SODA 2003, pp. 18–27 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andris Ambainis
    • 1
  • Kazuo Iwama
    • 2
  • Akinori Kawachi
    • 3
  • Rudy Raymond
    • 2
  • Shigeru Yamashita
    • 4
  1. 1.Department of Combinatorics and OptimizationUniversity of Waterloo 
  2. 2.Graduate School of InformaticsKyoto University 
  3. 3.Tokyo Institute of TechnologyGraduate School of Information Science and Engineering 
  4. 4.Nara Institute of Science and TechnologyGraduate School of Information Science 

Personalised recommendations