Acyclic Orientation of Drawings

  • Eyal Ackerman
  • Kevin Buchin
  • Christian Knauer
  • Günter Rote
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4059)


Given a set of curves in the plane or a topological graph, we ask for an orientation of the curves or edges which induces an acyclic orientation on the corresponding planar map. Depending on the maximum number of crossings on a curve or an edge, we provide algorithms and hardness proofs for this problem.


Outgoing Edge Topological Graph Connection Point Directed Cycle Orientation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 378–387. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Pach, J., Radoicic, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. In: Proc. 20th ACM Symp. on Computational Geometry (SoCG), Brooklyn, NY, pp. 68–75 (2004)Google Scholar
  3. 3.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: Proc. 19th Ann. ACM Symp. on Theory of Computing (STOC), NYC, NY, pp. 365–372 (1987)Google Scholar
  5. 5.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. 10th Ann. ACM Symp. on Theory of Computing (STOC), San Diego, CA, pp. 216–226 (1978)Google Scholar
  6. 6.
    Tamassia, R., Tollis, I.G.: Algorithms for visibility representations of planar graphs. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp. 130–141. Springer, Heidelberg (1985)Google Scholar
  7. 7.
    Even, S.: Graph Algorithms. Computer Science Press (1979)Google Scholar
  8. 8.
    Even, S., Tarjan, R.E.: Computing an st-numbering. Theoretical Computer Science 2(3), 339–344 (1976)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Habert, L., Pocchiola, M.: A homotopy theorem for arrangements of double pseudolines. In: Proc. 20th European Workshop on Comput. Geom. (EWCG), Delphi, Greece, pp. 211–214 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eyal Ackerman
    • 1
  • Kevin Buchin
    • 2
  • Christian Knauer
    • 2
  • Günter Rote
    • 2
  1. 1.Department of Computer ScienceTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Institute of Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations