Reoptimization of Minimum and Maximum Traveling Salesman’s Tours

  • Giorgio Ausiello
  • Bruno Escoffier
  • Jérôme Monnot
  • Vangelis Th. Paschos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4059)


In this paper, reoptimization versions of the traveling salesman problem (TSP) are addressed. Assume that an optimum solution of an instance is given and the goal is to determine if one can maintain a good solution when the instance is subject to minor modifications. We study the case where nodes are inserted in, or deleted from, the graph. When inserting a node, we show that the reoptimization problem for MinTSP is approximable within ratio 4/3 if the distance matrix is metric. We show that, dealing with metric MaxTSP, a simple heuristic is asymptotically optimum when a constant number of nodes are inserted. In the general case, we propose a 4/5-approximation algorithm for the reoptimization version of MaxTSP.


Travel Salesman Problem Travel Salesman Problem Hamiltonian Cycle Hamiltonian Path Initial Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman problem. Networks 42(3), 154–159 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bartusch, M., Mohring, R.H., Radermacher, F.J.: Scheduling project networks with resource constraints and time windows. Ann. Oper. Res. 16, 201–240 (1988)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bartusch, M., Mohring, R.H., Radermacher, F.J.: A conceptional outline of a dss for scheduling problems in the building industry. Decision Support Systems 5, 321–344 (1989)CrossRefGoogle Scholar
  4. 4.
    Chen, Z.-Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algorithms for Max TSP. Information Processessing Letters 95, 333–342 (2005)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 338, Grad School of Industrial Administration, Canergi-Mellon University, Pittsburgh (1976)Google Scholar
  6. 6.
    Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification - a technique for speeding up dynamic graph algorithms. Journal of the ACM 44(5), 669–696 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Combinatorial Optimization. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  8. 8.
    Hartvigsen, D.: Extensions of Matching Theory. PhD thesis, Carnegie-Mellon University (1984)Google Scholar
  9. 9.
    Hassin, R., Rubinstein, S.: A 7/8-approximation algorithm for metric Max TSP. Information Processessing Letters 81(5), 247–251 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Henzinger, M.R., King, V.: Maintaining minimum spanning trees in dynamic graphs. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 594–604. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study. In: Aarts, E., Lenstra, J.K. (eds.) Local search in combinatorial optimization. Wiley, Chichester (1997)Google Scholar
  12. 12.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem: a guided tour of Combinatorial Optimization. In: Discrete Mathematics and Optimization. Wiley, Chichester (1985)Google Scholar
  13. 13.
    Papadimitriou, C.H., Steiglitz, K.: Some complexity results for the traveling salesman problem. In: STOC 1976, pp. 1–9 (1976)Google Scholar
  14. 14.
    Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and two. Mathematics of Operations Research 18, 1–11 (1993)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sahni, S., Gonzalez, T.F.: P-complete approximation problems. J. ACM 23(3), 555–565 (1976)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Schäffter, M.W.: Scheduling with forbidden sets. Discrete Applied Mathematics 72(1-2), 155–166 (1997)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Serdyukov, A.I.: An algorithm with an estimate for the traveling salesman problem of the maximum. Upravlyaemye Sistemy (in Russian) 25, 80–86 (1984)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Giorgio Ausiello
    • 1
  • Bruno Escoffier
    • 2
  • Jérôme Monnot
    • 2
  • Vangelis Th. Paschos
    • 2
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.LamsadeCNRS and Université Paris DauphineFrance

Personalised recommendations