Advertisement

Object Recognition for Obstacle Avoidance in Mobile Robots

  • José M. Bolanos
  • Wilfredis Medina Meléndez
  • Leonardo Fermín
  • José Cappelletto
  • Gerardo Fernández-López
  • Juan C. Grieco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)

Abstract

In this paper is shown an obstacle avoidance strategy based on object recognition using an artificial vision application. Related works focus on the implementation of efficient algorithms for image processing. This work emphasizes in using minimum information from an image in order to generate free obstacles trajectories. The algorithm used is based on Pattern Matching for detection of the robot and Classification for the rest of objects. Each form of detection has its particular algorithm: Cross Correlation for Pattern matching and Nearest Neighbor for Classification. The objective pursued is to demonstrate that, with a very simple system, precise information can be provided to a navigation system in order to find free obstacle paths.

Keywords

Mobile Robot Object Recognition Pattern Match Near Neighbor Obstacle Avoidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hel-Or, Y., Hel-Or, H.: Real Time Pattern Matching Using Projection Kernels. IEEE Trans. on Patt. Anal. and Mach. Int. 27, 1430–1445 (2005)CrossRefGoogle Scholar
  2. 2.
    Uenohara, M., Kanade, T.: Use of Fourier and Karhunen-Loeve decomposition for fast pattern matching with a large set of templates. IEEE Trans. on Patt. Anal. and Mach. Int., 19, 891–898 (1997)Google Scholar
  3. 3.
    National Instruments: IMAQ Vision Concepts Manual, pp. 12-1–12-8, 16-1–16-21 (2005)Google Scholar
  4. 4.
    Bolanos, J.M.: Embedded Control System Implementation for a Differencial Drive Vehicle. BSc. Thesis. Simon Bolivar University, pp. 42–53, 69–76 (2006)Google Scholar
  5. 5.
    Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis. Third revised and enlarged edition, pp. 124–132. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Lewis, J. P.: Fast Normalized Cross-Correlation. Industrial Light & Magic, available in http://www.idiom.com/~zilla/index.html
  7. 7.
    Gonzales, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley Publishing Company, Inc., Reading (1992)Google Scholar
  8. 8.
    Tou, J.T., Gonzalez, R.C.: Pattern Recognition Principles. Addison-Wesley Publishing Company, Inc., Reading (1974)MATHGoogle Scholar
  9. 9.
    Sing-Tze, B.: Pattern Recognition: Application to Large Data-Set Problems. Marcel-Dekker, New York (1984)Google Scholar
  10. 10.
    Mitchell, T.: Machine Learning. pp. 230–235, McGraw-Hill Science/Engineering/Math (1997)Google Scholar
  11. 11.
    Willard, S.: General Topology, p. 16. Addison-Wesley, Reading (1970)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • José M. Bolanos
    • 1
  • Wilfredis Medina Meléndez
    • 1
  • Leonardo Fermín
    • 1
  • José Cappelletto
    • 1
  • Gerardo Fernández-López
    • 1
  • Juan C. Grieco
    • 1
  1. 1.Mechatronics Group, ELE-302Simon Bolivar UniversitySartenejas, MirandaVenezuela

Personalised recommendations