Partitioning of VLSI Circuits on Subcircuits with Minimal Number of Connections Using Evolutionary Algorithm

  • Adam Słowik
  • Michał Białko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)


In this paper, we present an evolutionary algorithm application to partitioning VLSI circuits on subcircuits with minimal number of connections between them. The algorithm is characterized by a multi-layer chromosome structure. Due to this structure, the partition of circuits is possible without applying a repair mechanism in the algorithm. The test circuits chosen from literature and created randomly are partitioned using proposed method. Results obtained by this method are compared with results obtained using a traditional Kernighan-Lin algorithm.


Evolutionary Algorithm Crossover Operator Electronic Circuit Mutation Operation Digital Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kozieł, S.: Evolutionary algorithms and their applications to the optimisation and modelling of the analogue electronic circuits, Ph. D. Thesis, Technical University of Gdańsk, Department of Electronics, Telecommunications, and Computer Science (1999)Google Scholar
  2. 2.
    Sait, S.M., Youssef, H.: VLSI physical design automation. Theory and practise. IEEE Press, New York (1995)Google Scholar
  3. 3.
    Chen, Y.P., Wang, T.C., Wong, D.F.: A Graph partitioning problem for multiple-chip design. In: Proceedings ISCAS 1993, pp. 1778-1781 (1993)Google Scholar
  4. 4.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49(2), 291–307 (1970)Google Scholar
  5. 5.
    Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristic for improving network partitions. In: Proceedings of the ACM/IEEE Design Automation Conference, pp. 175–181.Google Scholar
  6. 6.
    Raman, S., Patnaik, L.M.: Performance-Driven MCM Partitioning Through an Adaptive Genetic Algorithm. IEEE Transaction on VLSI Systems 4(4) (December 1996)Google Scholar
  7. 7.
    Vemuri, R.: Genetic algorithms for MCM partitioning. Electronic Letters 30(16), 1270–1272 (1994)CrossRefGoogle Scholar
  8. 8.
    Słowik, A., Białko, M.: Modified Version of Roulette Selection for Evolution Algorithm - The Fan Selection. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 474–479. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Rutkowski, J., Zieliński, Ł : Using evolutionary techniques for chosen optimalization problems related to analog circuits design. In: Proceedings of ECCTD 2003 Conference (2003)Google Scholar
  10. 10.
    Słowik, A., Białko, M.: Design and Optimization of Combinational Digital Circuits Using Modified Evolutionary Algorithm. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 468–473. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Goldberg, D.E., Lingle, R.: Alleles, Loci, and the TSP. In: Proceedings of the First International Conference on Genetic Algorithms, pp. 154–159. Lawrence Erlbaum Associates, Hillsdale (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Adam Słowik
    • 1
  • Michał Białko
    • 1
  1. 1.Department of Electronics and Computer ScienceTechnical University of KoszalinKoszalinPoland

Personalised recommendations