Directional Distributions and Their Application to Evolutionary Algorithms

  • Przemysław Prętki
  • Andrzej Obuchowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)


In this paper, a concept of directional mutations for phenotypic evolutionary algorithms is presented. The proposed approach allows, in a very convenient way, to adapt the probability measure underlying the mutation operator during evolutionary process. Moreover, the paper provides some guidance, along with suitable theorems, which makes it possible to get a deeper understanding of the ineffectiveness of isotropic mutations for large-scale problems.


Evolutionary Algorithm Mutation Operator Stable Index Directional Distribution Directional Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, E., Luna, F., Nebro, A.J.: Advances in parallel heterogenous genetic algortihms for continous optimization. Int. J. Appl. Math. Comput. Sci. 14(3), 317–333 (2000)MathSciNetGoogle Scholar
  2. 2.
    Dhillon, I.S., Sra, S.: Modeling Data using Directional Distributions. Technical Report TR − 03 − 06 (2003)Google Scholar
  3. 3.
    Karcz-Dulȩba, I.: Asymptotic behaviour of a discrete dynamical system generated by a simple evolutionary process, Int. J. Appl. Math. Comput. Sci. 14(1), 79–90 (2004)MathSciNetGoogle Scholar
  4. 4.
    Fang, K.-T., Kotz, S., Ng, K.-W.: Symmetric Multivariate and Related Distributions. Chapman and Hall, London (1990)zbMATHGoogle Scholar
  5. 5.
    Galar, R.: Evolutionary search with soft selection, Biological Cybernetics, vol. 60, pp. 357–364 (1989)Google Scholar
  6. 6.
    Gutowski, M.: Lévy flights as an underlying mechanism for a global optimization algorithm. Proc. 5th Conf. Evolutionary Algorithms and Global Optimization, Jastrzȩbia Gora, Poland, Warsaw University of Technology Press, pp. 79–86 (2001)Google Scholar
  7. 7.
    Mardia, K.V., Jupp, P.: Directional Statistics, 2nd edn. John Willey and Sons Ltd., New york (2000)zbMATHGoogle Scholar
  8. 8.
    Obuchowicz, A.: Evolutionary Algorithms in Global Optimization and Dynamic System Diagnosis. Lubuskie Scientific Society, Zielona Góra (2003)Google Scholar
  9. 9.
    Obuchowicz, A., Prȩtki, P.: Phenotypic evolution with mutation based on symmetric α-stable distribution. Int. J. Appl. Math. Comput. Sci. 14(3), 289–316 (2004)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian Optimization Algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, vol. I, pp. 525–532. Morgan Kaufmann Publishers, San Fransisco (1999)Google Scholar
  11. 11.
    Rudolph, G.: On Correlated Mutations in Evolution Strategies. Parallel Problem Solving from Nature 2. In: Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels (1992)Google Scholar
  12. 12.
    Kern, S., Muller, S., Buche, D., Hansen, N., Koumoutsakos, P.: Learning probability distributions in continuous evolutionary algorithms, in Workshop on Fundamentals in Evolutionary Algorithms, Thirtieth International Colloquium on Automata, Languages and Programming, Eindhoven (2003)Google Scholar
  13. 13.
    Salomon, R.: Evolutionary Algorithms and Gradient Search: Similarities and Differences. IEEE Transactions on Evolutionary Computation 2(2), 45–55 (1998)CrossRefGoogle Scholar
  14. 14.
    Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. In: Chapman & Hall, New York, Chapman and Hall, Boca Raton (1994)Google Scholar
  15. 15.
    Lee, C.Y., Yao, X.: Evolutionary Programming Using Mutations Based on the Lévy Probability Distribution. IEEE Transactions on Evolutionary Computation 8(1), 1–13 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Przemysław Prętki
    • 1
  • Andrzej Obuchowicz
    • 1
  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations