Skip to main content

Improved Multi-Objective Diversity Control Oriented Genetic Algorithm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Abstract

This paper presents an improved multi-objective diversity control oriented genetic algorithm (MODCGA-II). The improvement includes the introduction of an objective-domain diversity control operator, which is chromosome representation independent, and a solution archive. The performance comparison between the MODCGA-II, a non-dominated sorting genetic algorithm II (NSGA-II) and an improved strength Pareto evolutionary algorithm (SPEA-II) is carried out where different two-objective benchmark problems with specific multi-objective characteristics are utilised. The results indicate that the MODCGA-II solutions are better than the solutions generated by the NSGA-II and SPEA-II in terms of the closeness to the true Pareto optimal solutions and the uniformity of solution distribution along the Pareto front.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mauldin, M.L.: Maintaining diversity in genetic search. In: Proceedings of the National Conference on Artificial Intelligence, Austin, TX, pp. 247–250 (1984)

    Google Scholar 

  2. Mori, N., Yoshida, J., Tamaki, H., Kita, H., Nishikawa, Y.: A thermodynamical selection rule for the genetic algorithm. In: Proceedings of the Second IEEE International Conference on Evolutionary Computation, Perth, WA, pp. 188–192 (1995)

    Google Scholar 

  3. Whitley, D.: The GENITOR algorithm and selection pressure: Why rank-based allocation of reproduction trials is best. In: Proceedings of the Third International Conference on Genetic Algorithms, Fairfax, VA, pp. 116–121 (1989)

    Google Scholar 

  4. Eshelman, L.J.: The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, vol. 1, pp. 265–283. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  5. Shimodaira, H.: A new genetic algorithm using large mutation rates and population-elitist selection (GALME). In: Proceedings of the Eighth IEEE International Conference on Tools with Artificial Intelligence, Toulouse, France, pp. 25–32 (1996)

    Google Scholar 

  6. Shimodaira, H.: DCGA: A diversity control oriented genetic algorithm. In: Proceedings of the Second International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, Glasgow, UK, pp. 444–449 (1997)

    Google Scholar 

  7. Shimodaira, H.: A diversity-control-oriented genetic algorithm (DCGA): Performance in function optimization. In: Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, pp. 44–51 (2001)

    Google Scholar 

  8. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part 1: A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics–Part A: Systems and Humans 28(1), 26–37 (1998)

    Article  Google Scholar 

  9. Sangkawelert, N., Chaiyaratana, N.: Diversity control in a multi-objective genetic algorithm. In: Proceedings of the 2003 Congress on Evolutionary Computation, Canberra, Australia, pp. 2704–2711 (2003)

    Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailiou, K., Fogarty, T. (eds.) Evolutionary Methods for Design, Optimisation and Control, Barcelona, Spain, pp. 95–100 (2002)

    Google Scholar 

  12. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  13. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Abraham, A., Jain, L.C., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, London (2005)

    Chapter  Google Scholar 

  14. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piroonratana, T., Chaiyaratana, N. (2006). Improved Multi-Objective Diversity Control Oriented Genetic Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_46

Download citation

  • DOI: https://doi.org/10.1007/11785231_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics